Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 75570 by naka3546 last updated on 12/Dec/19

Commented by naka3546 last updated on 12/Dec/19

(([ blue  area ])/([ square  area ]))  =  ?

[bluearea][squarearea]=?

Answered by mr W last updated on 13/Dec/19

Commented by mr W last updated on 13/Dec/19

METHOD 1  say side length of square = 2  (2−r cos θ)^2 +(r sin θ−1)^2 =1^2   r^2 −2(sin θ+2 cos θ)r+4=0    sin θ+2 cos θ=(√5) cos (θ−α)  with α=tan^(−1) (1/2)  r^2 −2(√5) cos (θ−α)r+4=0  ⇒r=(√5) cos (θ−α)−(√(5 cos^2  (θ−α)−4))  r^2 =10 cos^2  (θ−α)−2(√5) cos (θ−α)(√(5 cos^2  (θ−α)−4))−4    2^2 −2(√5) cos (θ_1 −α)2+4=0  ⇒cos (θ_1 −α)=(2/(√5))=cos α  ⇒θ_1 =2α=2 tan^(−1) (1/2)    A_(blue) =∫_(π/4) ^θ_1  (1/2)(2^2 −r^2 )dθ  =(1/2)∫_(π/4) ^(2α) (8−10 cos^2  (θ−α)+2(√5) cos (θ−α)(√(5 cos^2  (θ−α)−4)))dθ  =∫_(π/4) ^(2α) (4−5 cos^2  (θ−α)+(√5) cos (θ−α)(√(5 cos^2  (θ−α)−4)))d(θ−α)  =∫_((π/4)−α) ^α (4−5 cos^2  ϕ+(√5) cos ϕ(√(5 cos^2  ϕ−4)))dϕ  =∫_((π/4)−α) ^α ((3/2)−(5/2) cos 2ϕ+(√5) cos ϕ(√(1−5 sin^2  ϕ)))dϕ  =[(3/2)ϕ−(5/4)sin 2ϕ]_((π/4)−α) ^α +∫_((π/4)−α) ^α (√(1−((√5) sin ϕ)^2 )) d((√5) sin ϕ)  =[(3/2)ϕ−(5/4)sin 2ϕ+(1/2)sin^(−1) ((√5) sin ϕ)+(((√5) sin ϕ (√(1−5 sin^2  ϕ)))/2)]_((π/4)−α) ^α   =(1/2)[3(2 tan^(−1) (1/2)−(π/4))−(5/2)((4/5)−(3/5))+(π/2)−(π/4)+0−(1/2)]  =3 tan^(−1) (1/2)−((π+2)/4)  A_(square) =2^2 =4  (A_(blue) /A_(square) )=(3/4) tan^(−1) (1/2)−((π+2)/(16))≈0.026386

METHOD1saysidelengthofsquare=2(2rcosθ)2+(rsinθ1)2=12r22(sinθ+2cosθ)r+4=0sinθ+2cosθ=5cos(θα)withα=tan112r225cos(θα)r+4=0r=5cos(θα)5cos2(θα)4r2=10cos2(θα)25cos(θα)5cos2(θα)442225cos(θ1α)2+4=0cos(θ1α)=25=cosαθ1=2α=2tan112Ablue=π4θ112(22r2)dθ=12π42α(810cos2(θα)+25cos(θα)5cos2(θα)4)dθ=π42α(45cos2(θα)+5cos(θα)5cos2(θα)4)d(θα)=π4αα(45cos2φ+5cosφ5cos2φ4)dφ=π4αα(3252cos2φ+5cosφ15sin2φ)dφ=[32φ54sin2φ]π4αα+π4αα1(5sinφ)2d(5sinφ)=[32φ54sin2φ+12sin1(5sinφ)+5sinφ15sin2φ2]π4αα=12[3(2tan112π4)52(4535)+π2π4+012]=3tan112π+24Asquare=22=4AblueAsquare=34tan112π+2160.026386

Answered by mr W last updated on 13/Dec/19

Commented by mr W last updated on 13/Dec/19

thanks for encouraging, sir!

thanksforencouraging,sir!

Commented by mr W last updated on 13/Dec/19

METHOD 2  say square side length =2  2 sin (α/2)=1 sin (β/2)=1 sin ((π/2)−(α/2))=1 cos (α/2)  ⇒tan (α/2)=(1/2)  ⇒α=2 tan^(−1) (1/2)  A_(blue) =(2^2 /2)(α−sin α)+(1^2 /2)(β−sin β)           −((π×2^2 )/8)+((((√2))^2 )/2)−(1^2 /2)((π/2)−sin (π/2))  A_(blue) =(2^2 /2)(2 tan^(−1) (1/2)−(4/5))+(1^2 /2)(π−2 tan^(−1) (1/2)−(4/5))−(π/2)+1−(π/4)+(1/2)  A_(blue) =4 tan^(−1) (1/2)−(8/5)+(π/2)−tan^(−1) (1/2)−(2/5)−(π/2)+1−(π/4)+(1/2)  A_(blue) =3 tan^(−1) (1/2)−((π+2)/4)  A_(square) =2^2 =4  ⇒(A_(blue) /A_(square) )=(3/4) tan^(−1) (1/2)−((π+2)/(16))≈0.026386

METHOD2saysquaresidelength=22sinα2=1sinβ2=1sin(π2α2)=1cosα2tanα2=12α=2tan112Ablue=222(αsinα)+122(βsinβ)π×228+(2)22122(π2sinπ2)Ablue=222(2tan11245)+122(π2tan11245)π2+1π4+12Ablue=4tan11285+π2tan11225π2+1π4+12Ablue=3tan112π+24Asquare=22=4AblueAsquare=34tan112π+2160.026386

Commented by behi83417@gmail.com last updated on 13/Dec/19

sir mrW! you are amazing!  thank you for being at this forum.

sirmrW!youareamazing!thankyouforbeingatthisforum.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com