Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 75616 by mr W last updated on 13/Dec/19

A_1 =2  B_1 =1  A_(n+1) =A_n −8B_n   B_(n+1) =A_n +7B_n   find A_n =?, B_n =?

A1=2B1=1An+1=An8BnBn+1=An+7BnfindAn=?,Bn=?

Commented by mind is power last updated on 13/Dec/19

 ((A_(n+1) ),(B_(n+1) ) )= (((1      −8)),((1         7)) ) ((A_n ),(B_n ) )  M= (((1    −8)),((1        7)) )   (((1 −x   −8)),((1          7−x)) )=0⇒x^2 −8x+15=0  x=5,x=3  D= (((3        0)),((0       5)) )  x=3⇒−2x−8y=0⇒x=−4y  U=(−4,1)  x=5⇒x+2y=0⇒x=−2y⇒V=(−2,1)  P= (((−4       −2)),((1           1)) )     p^− =−(1/2) (((1          2)),((−1      −4)) )  M=P  D  P^−   M^n =PD^n P^−    ((A_n ),(B_n ) )=PD^(n−1) .P^− . ((A_1 ),(B_1 ) )  PD^n P^− =P. (((3^n        0)),((0        5^n )) ).−(1/2) (((1           2)),((−1      −4)) )  = (((−4         −2)),((1                 1)) ) (((−(3^n /2)         −3^n   )),(((5^n /2)           2.5^n )) )= (((2.3^n −5^n          4.3^n −4.5^n )),((−(3^n /2)+(5^n /2)          −3^n +2.5^n )) )   ((A_(n+1) ),(B_(n+1) ) )= (((2.3^n −5^n        4.3^n −4.5^n )),((−(3^n /2)+(5^n /2)       −3^n +2.5^n )) ) ((2),(1) )  A_(n+1) =8.3^n −6.5^n   B_(n+1) =−2.3^n +3.5^n   A_n =8.3^(n−1) −6.5^(n−1)   B_n =−2.3^(n−1) +3.5^(n−1)

(An+1Bn+1)=(1817)(AnBn)M=(1817)(1x817x)=0x28x+15=0x=5,x=3D=(3005)x=32x8y=0x=4yU=(4,1)x=5x+2y=0x=2yV=(2,1)P=(4211)p=12(1214)M=PDPMn=PDnP(AnBn)=PDn1.P.(A1B1)PDnP=P.(3n005n).12(1214)=(4211)(3n23n5n22.5n)=(2.3n5n4.3n4.5n3n2+5n23n+2.5n)(An+1Bn+1)=(2.3n5n4.3n4.5n3n2+5n23n+2.5n)(21)An+1=8.3n6.5nBn+1=2.3n+3.5nAn=8.3n16.5n1Bn=2.3n1+3.5n1

Commented by mr W last updated on 14/Dec/19

thanks alot sir!  i need some time to understand  your solution and why you did so.

thanksalotsir!ineedsometimetounderstandyoursolutionandwhyyoudidso.

Commented by peter frank last updated on 14/Dec/19

help me Qn 75602

helpmeQn75602

Commented by mind is power last updated on 14/Dec/19

Hello Sir Mr W , its solve system of series usign lineair Algebre  not sur in french  Tap in google    ∴ System de suite numerique et diagonilisations Des matrice ∵  you get in french but you can understand and my bee you will  find after that in english sorry my english is not good

HelloSirMrW,itssolvesystemofseriesusignlineairAlgebrenotsurinfrenchTapingoogleSystemdesuitenumeriqueetdiagonilisationsDesmatriceyougetinfrenchbutyoucanunderstandandmybeeyouwillfindafterthatinenglishsorrymyenglishisnotgood

Commented by mr W last updated on 14/Dec/19

M^(ERCI)  B^(EAUCOUP) !

MERCIBEAUCOUP!

Commented by mind is power last updated on 14/Dec/19

De Rien :)

DeRien:)

Commented by mathmax by abdo last updated on 15/Dec/19

we have  a_(n+1) =a_n −8b_n                        b_(n+1) =a_n +7b_n    ⇒ ((a_(n+1) ),(b_(n+1) ) )= (((1       −8)),((1           7)) )  ((a_n ),(b_n ) )  ⇒  ((a_(n+1) ),(b_(n+1) ) )  =A^n   ((a_1 ),(b_1 ) )   let calculate A^n   p_c (x)=det(A−xI) = determinant (((1−x      −8)),((1             7−x)))=(1−x)(7−x)+8  =7−x−7x+x^2 +8 =x^2 −8x +15  Δ^′ =4^2 −15 =1 ⇒x_1 =4+1 =5  and x_2 =4−1 =3  we have x^n =q p_c (x)+u_n x +v_n  ⇒ A^n =u_n A +v_n I  we have 3^n = 3u_n +v_n  and 5^n  =5u_n +v_n  ⇒  2u_n =5^n −3^n  ⇒u_n =((5^n −3^n )/2)  also v_n =3^n −3u_n =3^n −3×((5^n −3^n )/2)  =((2.3^n −3.5^n +3.3^n )/2) =((5.3^n −3.5^n )/2) ⇒  A^n =((5^n −3^n )/2) (((1        −8)),((1             7)) )+ ((5.3^n −3.5^n )/2) (((1        0)),((0         1)) )  = (((((5^n −3^n )/2)               −4.5^n +4.3^n )),((((5^n −3^n )/2)                (7/2)(5^n −3^n ))) )  + (((((5.3^n −3.5^n )/2)           0)),((0                    ((5.3^n −3.5^n )/2))) )  = (((−5^n +2.3^n                 4.3^n −4.5^n )),((((5^n −3^n )/2)                 2.  5^n −3^n )) ) ⇒   ((a_(n+1) ),(b_(n+1) ) )  =A^n   ((2),(1) )    and A^n  is known ...

wehavean+1=an8bnbn+1=an+7bn(an+1bn+1)=(1817)(anbn)(an+1bn+1)=An(a1b1)letcalculateAnpc(x)=det(AxI)=|1x817x|=(1x)(7x)+8=7x7x+x2+8=x28x+15Δ=4215=1x1=4+1=5andx2=41=3wehavexn=qpc(x)+unx+vnAn=unA+vnIwehave3n=3un+vnand5n=5un+vn2un=5n3nun=5n3n2alsovn=3n3un=3n3×5n3n2=2.3n3.5n+3.3n2=5.3n3.5n2An=5n3n2(1817)+5.3n3.5n2(1001)=(5n3n24.5n+4.3n5n3n272(5n3n))+(5.3n3.5n2005.3n3.5n2)=(5n+2.3n4.3n4.5n5n3n22.5n3n)(an+1bn+1)=An(21)andAnisknown...

Answered by mr W last updated on 14/Dec/19

attempt an other way:  let C_(n+1) =A_(n+1) +kB_(n+1)  with k=constant  ⇒C_n =A_n +kB_n   if we can get C_(n+1) =hC_n  with h=constant  then we can solve both A_n  and B_n .  C_(n+1) =A_(n+1) +kB_(n+1)   C_(n+1) =(A_n −8B_n )+k(A_n +7B_n )  C_(n+1) =(1+k)A_n +(7k−8)B_n   C_(n+1) =(1+k)[A_n +((7k−8)/(1+k))B_n ]  ≡C_(n+1) =h[A_n +kB_n ]=hC_n   i.e.   ((7k−8)/(1+k))=k  ⇒k^2 −6k+8=0  ⇒(k−2)(k−4)=0  ⇒k=2 or k=4  h=1+k=3 or 5    with k=2 and h=3:  C_1 =A_1 +kB_1 =2+2×1=4  C_(n+1) =hC_n =h^n C_1 =4×3^n   i.e. A_(n+1) +2B_(n+1) =4×3^n    ...(i)  with k=4 and h=5:  C_1 =A_1 +kB_1 =2+4×1=6  C_(n+1) =hC_n =h^n C_1 =6×5^n   i.e. A_(n+1) +4B_(n+1) =6×5^n    ...(ii)  (ii)−(i):  2B_(n+1) =6×5^n −4×3^n   ⇒B_(n+1) =3×5^n −2×3^n   (i)×2−(ii):  A_(n+1) =2×4×3^n −6×5^n   ⇒A_(n+1) =8×3^n −6×5^n     ⇒A_n =8×3^(n−1) −6×5^(n−1)   ⇒B_n =3×5^(n−1) −2×3^(n−1)

attemptanotherway:letCn+1=An+1+kBn+1withk=constantCn=An+kBnifwecangetCn+1=hCnwithh=constantthenwecansolvebothAnandBn.Cn+1=An+1+kBn+1Cn+1=(An8Bn)+k(An+7Bn)Cn+1=(1+k)An+(7k8)BnCn+1=(1+k)[An+7k81+kBn]Cn+1=h[An+kBn]=hCni.e.7k81+k=kk26k+8=0(k2)(k4)=0k=2ork=4h=1+k=3or5withk=2andh=3:C1=A1+kB1=2+2×1=4Cn+1=hCn=hnC1=4×3ni.e.An+1+2Bn+1=4×3n...(i)withk=4andh=5:C1=A1+kB1=2+4×1=6Cn+1=hCn=hnC1=6×5ni.e.An+1+4Bn+1=6×5n...(ii)(ii)(i):2Bn+1=6×5n4×3nBn+1=3×5n2×3n(i)×2(ii):An+1=2×4×3n6×5nAn+1=8×3n6×5nAn=8×3n16×5n1Bn=3×5n12×3n1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com