Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75773 by Ajao yinka last updated on 16/Dec/19

Answered by mind is power last updated on 16/Dec/19

log(1+e^x )=x+log(1+e^(−x) )  =∫_0 ^(+∞) x^2 log(1+e^(−x) )dx  log(1+e^(−x) )=Σ_(k≥0) (((−e^(−x) )^k )/k)  ⇒Σ_(k≥1) ∫x^2 .(((−1)^k e^(−kx)  )/k)dx  =Σ_(k≥1) (((−1)^k )/k)∫_0 ^(+∞) x^2 e^(−kx) dx  u=kx⇒dx=(du/k)  =Σ_(k≥1) (((−1)^(k−1) )/k)∫_0 ^(+∞) (u^2 /k^3 ).e^(−u) du  =Σ_(k≥1) (((−1)^(k−) )/k^4 )Γ(3)  =−2Σ_(k≥1) (((−1)^k )/k^4 )  ζ(4)=Σ_(k≥1) (1/k^4 )⇒Σ_(k≥1) (((−1)^k )/k^4 )=((ζ(4))/2^4 )−(1−(1/2^4 ))ζ(4)=(−(1/2^3 )+1)ζ(4)=−((7/8).(π^4 /(90)))  ⇒∫_0 ^(+∞) x^2 {log(1+e^x )−x)}dx=−2.−(7/8)((π^4 /(90)))=((7π^4 )/(360))

$$\mathrm{log}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)=\mathrm{x}+\mathrm{log}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{x}} \right) \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \mathrm{x}^{\mathrm{2}} \mathrm{log}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{x}} \right)\mathrm{dx} \\ $$$$\mathrm{log}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{x}} \right)=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{e}^{−\mathrm{x}} \right)^{\mathrm{k}} }{\mathrm{k}} \\ $$$$\Rightarrow\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\int\mathrm{x}^{\mathrm{2}} .\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{e}^{−\mathrm{kx}} \:}{\mathrm{k}}\mathrm{dx} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}}\int_{\mathrm{0}} ^{+\infty} \mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{kx}} \mathrm{dx} \\ $$$$\mathrm{u}=\mathrm{kx}\Rightarrow\mathrm{dx}=\frac{\mathrm{du}}{\mathrm{k}} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{1}} }{\mathrm{k}}\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{k}^{\mathrm{3}} }.\mathrm{e}^{−\mathrm{u}} \mathrm{du} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}−} }{\mathrm{k}^{\mathrm{4}} }\Gamma\left(\mathrm{3}\right) \\ $$$$=−\mathrm{2}\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}^{\mathrm{4}} } \\ $$$$\zeta\left(\mathrm{4}\right)=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{4}} }\Rightarrow\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{k}^{\mathrm{4}} }=\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{2}^{\mathrm{4}} }−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\right)\zeta\left(\mathrm{4}\right)=\left(−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\mathrm{1}\right)\zeta\left(\mathrm{4}\right)=−\left(\frac{\mathrm{7}}{\mathrm{8}}.\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\right) \\ $$$$\left.\Rightarrow\int_{\mathrm{0}} ^{+\infty} \mathrm{x}^{\mathrm{2}} \left\{\mathrm{log}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)−\mathrm{x}\right)\right\}\mathrm{dx}=−\mathrm{2}.−\frac{\mathrm{7}}{\mathrm{8}}\left(\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\right)=\frac{\mathrm{7}\pi^{\mathrm{4}} }{\mathrm{360}} \\ $$$$ \\ $$

Commented by Ajao yinka last updated on 16/Dec/19

Nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com