Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 75778 by mr W last updated on 16/Dec/19

if x^2 +y^2 =p, x^3 +y^3 =q,  find x^n +y^n  in terms of p, q and n.  (n≥4)

ifx2+y2=p,x3+y3=q,findxn+ynintermsofp,qandn.(n4)

Answered by mind is power last updated on 17/Dec/19

let e_1 =x+y,e_2 =xy  e_k =0,∀k≥3  p_k =x^k +y^k   ⇒ { ((2e_2 =e_1 .p_1 −p_2 )),((3e_3 =0=e_2 p_1 −e_1 p_2 +p_3 )) :}⇔   { ((2e_2 =p_1 ^2 −p)),((0=e_2 p_1 −p_1 p+q)) :}  ⇒0=p_1 (((p_1 ^2 −p)/2)−p)+q⇔p_1 ^3 −3pp_1 +2q=0  p_1  Root of  X^3 −3pX+2q   cardan  p_1 know ⇒e_2 know   { ((x+y=p_1 )),((xy=e_2 )) :}  ⇒x,y Root of X^2 −p_1 X+e_2   lets say a,b  X^n +Y^n =a^n +b^n

lete1=x+y,e2=xyek=0,k3pk=xk+yk{2e2=e1.p1p23e3=0=e2p1e1p2+p3{2e2=p12p0=e2p1p1p+q0=p1(p12p2p)+qp133pp1+2q=0p1RootofX33pX+2qcardanp1knowe2know{x+y=p1xy=e2x,yRootofX2p1X+e2letssaya,bXn+Yn=an+bn

Commented by mr W last updated on 18/Dec/19

thank you sir!

thankyousir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com