Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75830 by Master last updated on 18/Dec/19

Commented by Master last updated on 18/Dec/19

sir mind is power , sir mathmax plz

sirmindispower,sirmathmaxplz

Commented by turbo msup by abdo last updated on 18/Dec/19

do you mean (sinx)^2  or sin(x^2 )?

doyoumean(sinx)2orsin(x2)?

Commented by Master last updated on 18/Dec/19

sin(x^2 )

sin(x2)

Commented by mathmax by abdo last updated on 19/Dec/19

at form of serie  we have  sin(x^2 ) =Σ_(n=0) ^∞  (((−1)^n (x^2 )^(2n+1) )/((2n+1)!))  =Σ_(n=0) ^∞  (((−1)^n x^(4n+2) )/((2n+1)!)) ⇒ ((sin(x^2 ))/x^2 ) =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))x^(4n)  ⇒  ∫  ((sin(x^2 ))/x^2 )dx =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)(4n+1)))x^(4n+1)  +C

atformofseriewehavesin(x2)=n=0(1)n(x2)2n+1(2n+1)!=n=0(1)nx4n+2(2n+1)!sin(x2)x2=n=0(1)n(2n+1)!x4nsin(x2)x2dx=n=0(1)n(2n+1)(4n+1)x4n+1+C

Commented by abdomathmax last updated on 19/Dec/19

let f(x)=∫_0 ^x  ((sin(t^2 ))/t^2 )dt ⇒  f(x)=[−((sin(t^2 ))/t)]_0 ^x −∫_0 ^x (−(1/t))(2t cos(t^2 )dt  =−((sin(x^2 ))/x) +2 ∫_0 ^x  cos(t^2 )dt  ∫_0 ^x  cos(t^2 )dt =Re(∫_0 ^x  e^(−it^2 ) dt)  and  changement  it^2 =u give t^2 =−iu ⇒t =(−iu)^(1/2)  ⇒  dt =(−i)^(1/2) (1/2)u^(−(1/2))  =(1/2)e^(−((iπ)/4))   u^(−(1/2))  ⇒  ∫_0 ^x   e^(−it^2 ) dt =(1/2)e^(−((iπ)/4)) ∫_0 ^(ix^2 )   e^(−u)   u^(−(1/2))  du  ...be continued...

letf(x)=0xsin(t2)t2dtf(x)=[sin(t2)t]0x0x(1t)(2tcos(t2)dt=sin(x2)x+20xcos(t2)dt0xcos(t2)dt=Re(0xeit2dt)andchangementit2=ugivet2=iut=(iu)12dt=(i)1212u12=12eiπ4u120xeit2dt=12eiπ40ix2euu12du...becontinued...

Answered by mr W last updated on 18/Dec/19

=∫sin x^2  d(−(1/x))  =−((sin x^2 )/x)+2∫cos x^2 dx  =−((sin x^2 )/x)+(√(2π))∫cos [(π/2)((((√2)x)/(√π)))^2 ]d((((√2)x)/(√π)))  =−((sin x^2 )/x)+(√(2π)) C((((√2)x)/(√π)))+C  with Fresnel integral:  S(x)=∫_0 ^x sin (((πt^2 )/2))dt  C(x)=∫_0 ^x cos (((πt^2 )/2))dt

=sinx2d(1x)=sinx2x+2cosx2dx=sinx2x+2πcos[π2(2xπ)2]d(2xπ)=sinx2x+2πC(2xπ)+CwithFresnelintegral:S(x)=0xsin(πt22)dtC(x)=0xcos(πt22)dt

Terms of Service

Privacy Policy

Contact: info@tinkutara.com