Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 75924 by benjo last updated on 21/Dec/19

Thr value of   ∫_(0 ) ^(π/2) cosec (x−(π/3))cosec (x−(π/6))dx  is

Thrvalueofπ/20cosec(xπ3)cosec(xπ6)dxis

Commented by mathmax by abdo last updated on 21/Dec/19

I =∫_0 ^(π/2)  (dx/(sin(x−(π/3))sin(x−(π/6))))   but we have  sin(x−(π/3))sin(x−(π/6)) =cos((π/2)−x+(π/3))cos((π/2)−x +(π/6))  =cos(((5π)/6)−x)cos(((2π)/3)−x)  =(1/2){ cos(((5π)/6)+((2π)/3)−2x) +cos(((5π)/6)−x−((2π)/3)+x)}  =(1/2){cos(((3π)/2)−2x) +cos((π/6))}=(1/2){cos(−(π/2)−2x)+((√3)/2)}  =(1/2){((√3)/2)−sin(2x)} ⇒I =2 ∫_0 ^(π/2)   (dx/(((√3)/2)−sin(2x)))  =4 ∫_0 ^(π/2)   (dx/((√3)−2sin(2x))) =_(2x=t) 4 ∫_0 ^π   (dt/(2((√3)−2sint)))  =2 ∫_0 ^π   (dt/((√3)−2sin(t))) =_(tan((t/2))=u)    2∫_0 ^(+∞)   (1/((√3)−2((2u)/(1+u^2 ))))((2du)/(1+u^2 ))  =4 ∫_0 ^∞    (du/((√3)+(√3)u^2 −4u)) =4 ∫_0 ^∞   (du/((√3)u^2 −4u +(√3)))  Δ^′  =(−2)^2 −3 =1 ⇒u_1 =((2+1)/(√3)) =(3/(√3)) =(√3)  u_2 =((2−1)/(√3)) =(1/(√3)) ⇒I =4 ∫_0 ^∞   (du/((√3)(u−(√3))(u−(1/(√3)))))  =(4/(√3))×(1/((√3)−(1/(√3))))∫_0 ^∞   ((1/(u−(√3)))−(1/(u−(1/(√3)))))du  =2  ln∣((u−(√3))/(u−(1/(√3))))∣ +c  =2ln∣((tan(x)−(√3))/(tan(x)−(1/(√3))))∣ +c

I=0π2dxsin(xπ3)sin(xπ6)butwehavesin(xπ3)sin(xπ6)=cos(π2x+π3)cos(π2x+π6)=cos(5π6x)cos(2π3x)=12{cos(5π6+2π32x)+cos(5π6x2π3+x)}=12{cos(3π22x)+cos(π6)}=12{cos(π22x)+32}=12{32sin(2x)}I=20π2dx32sin(2x)=40π2dx32sin(2x)=2x=t40πdt2(32sint)=20πdt32sin(t)=tan(t2)=u20+1322u1+u22du1+u2=40du3+3u24u=40du3u24u+3Δ=(2)23=1u1=2+13=33=3u2=213=13I=40du3(u3)(u13)=43×13130(1u31u13)du=2lnu3u13+c=2lntan(x)3tan(x)13+c

Commented by benjo last updated on 22/Dec/19

thanks sir

thankssir

Commented by abdomathmax last updated on 23/Dec/19

you are welcome.

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com