All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 75933 by Rio Michael last updated on 21/Dec/19
solvetheinequality a.ln(2x−e)>1 b.(lnx)2−lnx−6<0 c.∣x∣+∣x+2∣⩾2 d.∣2x−5∣+∣x+2∣>7
Commented bymathmax by abdo last updated on 21/Dec/19
forx>e2wehaveln(2x−e)>1⇒ln(2x−e)>ln(e)⇒ 2x−e>e⇒2x>2e⇒x>e⇒S=]e,+∞[ b)letlnx=twithx>0(e)⇔t2−t−6<0 Δ=1−4(−6)=25⇒t1=1+52=3andt2=1−52=−2 t2−t−6<0⇔−2<t<3⇒−2<lnx<3⇒e−2<x<e3 c)∣x∣+∣x+2∣⩾2⇔∣x∣+∣x+2∣−2⩾0 letA(x)=∣x∣+∣x+2∣−2 x−20+∞ ∣x∣−x−xx ∣x+2∣−x−2x+2x+2 A(x)−2x−402x case1x⩽−2(in)⇔/−2x−4⩾0⇔−2x⩾4⇔ 2x⩽−4⇔x⩽−2⇒S1=]−∞,−2] case2−2⩽x⩽0(in)⇔0⩾0(true)⇒s2=[−2,0] case3x⩾0(in)⇔2x⩾0⇒x⩾0⇒S3=[0,+∞[⇒ S=∪Si=R.
Commented byRio Michael last updated on 21/Dec/19
thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com