Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 75933 by Rio Michael last updated on 21/Dec/19

solve the inequality  a.  ln(2x−e) >1  b. (lnx)^2 −lnx−6<0  c. ∣x∣ + ∣x+2∣ ≥ 2  d. ∣2x−5∣ + ∣x +2∣ > 7

solvetheinequality a.ln(2xe)>1 b.(lnx)2lnx6<0 c.x+x+22 d.2x5+x+2>7

Commented bymathmax by abdo last updated on 21/Dec/19

for x>(e/2)   we have ln(2x−e)>1 ⇒ln(2x−e)>ln(e) ⇒  2x−e>e ⇒2x>2e ⇒x>e   ⇒S=]e,+∞[  b) let lnx=t  with x>0  (e) ⇔ t^2 −t−6<0  Δ=1−4(−6) =25 ⇒t_1 =((1+5)/2) =3  and t_2 =((1−5)/2) =−2  t^2 −t−6<0 ⇔ −2<t<3  ⇒−2<lnx<3 ⇒e^(−2) <x<e^3   c)  ∣x∣ +∣x+2∣≥2  ⇔ ∣x∣+∣x+2∣−2≥0  let A(x)=∣x∣+∣x+2∣−2  x               −2                       0                   +∞  ∣x∣     −x                 −x                 x  ∣x+2∣ −x−2     x+2              x+2  A(x)  −2x−4       0                2x  case 1     x≤−2      (in) ⇔ /−2x−4 ≥0  ⇔ −2x≥4 ⇔  2x≤−4 ⇔x≤−2    ⇒S_1 =]−∞,−2]  case 2   −2≤x≤0     (in) ⇔  0≥0  (true)⇒s_2 =[−2,0]  case 3    x≥0     (in) ⇔ 2x≥0 ⇒x ≥0 ⇒S_3 =[0,+∞[ ⇒  S =∪ Si=R .

forx>e2wehaveln(2xe)>1ln(2xe)>ln(e) 2xe>e2x>2ex>eS=]e,+[ b)letlnx=twithx>0(e)t2t6<0 Δ=14(6)=25t1=1+52=3andt2=152=2 t2t6<02<t<32<lnx<3e2<x<e3 c)x+x+2∣⩾2x+x+220 letA(x)=∣x+x+22 x20+ xxxx x+2x2x+2x+2 A(x)2x402x case1x2(in)/2x402x4 2x4x2S1=],2] case22x0(in)00(true)s2=[2,0] case3x0(in)2x0x0S3=[0,+[ S=Si=R.

Commented byRio Michael last updated on 21/Dec/19

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com