Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75950 by turbo msup by abdo last updated on 21/Dec/19

give ∫_0 ^(π/2)  (x/(sinx))dx  at form of serie.

$${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\:{at}\:{form}\:{of}\:{serie}. \\ $$

Commented by mathmax by abdo last updated on 22/Dec/19

let A = ∫_0 ^(π/2)  (x/(sinx))dx  changement tan((x/2))=t give  A =2∫_0 ^1   ((arctan(t))/((2t)/(1+t^2 )))((2dt)/(1+t^2 )) =2 ∫_0 ^1  ((arctan(t))/t)dt  we have  (d/dt)(arctant) =(1/(1+t^2 )) =Σ_(n=0) ^∞  (−1)^n  t^(2n)  ⇒  arctan(t) =Σ_(n=0) ^∞  (−1)^n  (t^(2n+1) /(2n+1)) +c    (c=0) ⇒  ((arctan(t))/t) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n)   ⇒∫_0 ^1  ((arctan(t))/t)dt=Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))∫_0 ^1  t^(2n) dt  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)))[(1/(2n+1))t^(2n+1) ]_0 ^1  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 )) ⇒  A =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))

$${let}\:{A}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left({t}\right)}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left({t}\right)}{{t}}{dt}\:\:{we}\:{have} \\ $$$$\frac{{d}}{{dt}}\left({arctant}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}} \:\Rightarrow \\ $$$${arctan}\left({t}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\:+{c}\:\:\:\:\left({c}=\mathrm{0}\right)\:\Rightarrow \\ $$$$\frac{{arctan}\left({t}\right)}{{t}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{t}^{\mathrm{2}{n}} \:\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left({t}\right)}{{t}}{dt}=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} {dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{t}^{\mathrm{2}{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by mathmax by abdo last updated on 22/Dec/19

forgive A =2 Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))

$${forgive}\:{A}\:=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com