Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75960 by Tony Lin last updated on 21/Dec/19

prove that ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2

provethat0π2ln(sinx)dx=π2ln2

Commented by Kunal12588 last updated on 21/Dec/19

now solve ∫_0 ^(π/2) ln(cos x)dx

nowsolve0π2ln(cosx)dx

Commented by Tony Lin last updated on 23/Dec/19

∫_0 ^(π/2) ln(sinx)dx  let θ=(π/2)−x,dθ=−dx  −∫_(π/2) ^0 ln[sin((π/2)−x)]dθ  =∫_0 ^(π/2) ln(cosx)dx

0π2ln(sinx)dxletθ=π2x,dθ=dxπ20ln[sin(π2x)]dθ=0π2ln(cosx)dx

Answered by Kunal12588 last updated on 21/Dec/19

I=∫_0 ^(π/2) ln(sin x) dx  ⇒I=∫_0 ^(π/2) ln(cos x) dx  2I=∫_0 ^(π/2) ln(sin x cos x)dx  ⇒2I=∫_0 ^(π/2) [ln(sin 2x)−ln(2)]dx  ⇒2I=∫_0 ^(π/2) ln(sin 2x) dx − [xln2]_0 ^(π/2)   let t=2x⇒dx=(1/2)dt  x→0⇒t→0  x→(π/2)⇒t→π  2I=(1/2)∫_0 ^π ln(sin t) dt − (π/2)ln2  ⇒2I=(1/2)×2∫_0 ^(π/2) ln(sin x)dx−(π/2)ln2  ⇒2I=I−(π/2)ln2  ⇒I=−(π/2)ln2    proved

I=0π2ln(sinx)dxI=0π2ln(cosx)dx2I=0π2ln(sinxcosx)dx2I=0π2[ln(sin2x)ln(2)]dx2I=0π2ln(sin2x)dx[xln2]0π2lett=2xdx=12dtx0t0xπ2tπ2I=120πln(sint)dtπ2ln22I=12×20π2ln(sinx)dxπ2ln22I=Iπ2ln2I=π2ln2proved

Commented by Tony Lin last updated on 23/Dec/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com