Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75960 by Tony Lin last updated on 21/Dec/19

prove that ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2

$${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx}=−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$

Commented by Kunal12588 last updated on 21/Dec/19

now solve ∫_0 ^(π/2) ln(cos x)dx

$${now}\:{solve}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\:{x}\right){dx} \\ $$

Commented by Tony Lin last updated on 23/Dec/19

∫_0 ^(π/2) ln(sinx)dx  let θ=(π/2)−x,dθ=−dx  −∫_(π/2) ^0 ln[sin((π/2)−x)]dθ  =∫_0 ^(π/2) ln(cosx)dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx} \\ $$$${let}\:\theta=\frac{\pi}{\mathrm{2}}−{x},{d}\theta=−{dx} \\ $$$$−\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} {ln}\left[{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right]{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx} \\ $$

Answered by Kunal12588 last updated on 21/Dec/19

I=∫_0 ^(π/2) ln(sin x) dx  ⇒I=∫_0 ^(π/2) ln(cos x) dx  2I=∫_0 ^(π/2) ln(sin x cos x)dx  ⇒2I=∫_0 ^(π/2) [ln(sin 2x)−ln(2)]dx  ⇒2I=∫_0 ^(π/2) ln(sin 2x) dx − [xln2]_0 ^(π/2)   let t=2x⇒dx=(1/2)dt  x→0⇒t→0  x→(π/2)⇒t→π  2I=(1/2)∫_0 ^π ln(sin t) dt − (π/2)ln2  ⇒2I=(1/2)×2∫_0 ^(π/2) ln(sin x)dx−(π/2)ln2  ⇒2I=I−(π/2)ln2  ⇒I=−(π/2)ln2    proved

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\:{x}\right)\:{dx} \\ $$$$\Rightarrow{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\:{x}\right)\:{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\:{x}\:{cos}\:{x}\right){dx} \\ $$$$\Rightarrow\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[{ln}\left({sin}\:\mathrm{2}{x}\right)−{ln}\left(\mathrm{2}\right)\right]{dx} \\ $$$$\Rightarrow\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\:\mathrm{2}{x}\right)\:{dx}\:−\:\left[{xln}\mathrm{2}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${let}\:{t}=\mathrm{2}{x}\Rightarrow{dx}=\frac{\mathrm{1}}{\mathrm{2}}{dt} \\ $$$${x}\rightarrow\mathrm{0}\Rightarrow{t}\rightarrow\mathrm{0} \\ $$$${x}\rightarrow\frac{\pi}{\mathrm{2}}\Rightarrow{t}\rightarrow\pi \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {ln}\left({sin}\:{t}\right)\:{dt}\:−\:\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\:{x}\right){dx}−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}{I}={I}−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$$$\Rightarrow{I}=−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}\:\:\:\:{proved} \\ $$

Commented by Tony Lin last updated on 23/Dec/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com