All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 75984 by Ajao yinka last updated on 21/Dec/19
Answered by mind is power last updated on 23/Dec/19
y=x2⇒Ω=∫01log(y)4(1+y+y2)dyletz=−log(y)⇒y=e−z⇒dy=−e−zdz⇒Ω=∫0+∞−ze−z4(e−2z+e−z+1)4Ω=∫0+∞−z(e−z)(e−z−1)e−3z−1dz4Ω=∫0+∞−ze−2ze−3z−1dz+∫0+∞ze−ze−3z−1dzΨm(z)=(−1)m+1.∫0+∞tme−zt1−e−tdtΩ=∫0+∞ze−2z1−e−3zdz−∫0+∞ze−z1−e−3z3z=r⇒4Ω=19.∫0+∞re−23r1−e−rdr−19∫0+∞re−r31−e−rdr4Ω=19Ψ1(23)−19Ψ1(13)=19(Ψ1(23)−Ψ1(13))Ω=136{Ψ1(23)−Ψ1(13)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com