Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 7600 by Rohit last updated on 05/Sep/16

solve ∣((x^2 −3x−1)/(x^2 +x+1))∣<3  give solution

$${solve}\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\mid<\mathrm{3}\:\:{give}\:{solution} \\ $$

Answered by Yozzia last updated on 05/Sep/16

∣u(x)∣<a⇒−a<u(x)<a.  ∴∣((x^2 −3x−1)/(x^2 +x+1))∣<3⇒−3<((x^2 −3x−1)/(x^2 +x+1))<3.  Now, x^2 +x+1>0 ∀x∈R.  To see this observe that   x^2 +x+1=(x+(1/2))^2 +(3/4) and for ∀x∈R,  min((x+(1/2))^2 +(3/4))=(3/4)>0. ⇒x^2 +x+1>0 ∀x∈R.  ∴ −3(x^2 +x+1)<x^2 −3x−1<3(x^2 +x+1)  −−−−−−−−−−−−−−−−−−−−−−−−−−−−  For x^2 −3x−1>−3x^2 −3x−3  4x^2 +2>0⇒2x^2 +1>0 which is true ∀x∈R.  −−−−−−−−−−−−−−−−−−−−−−−−−  For x^2 −3x−1<3x^2 +3x+3  2x^2 +6x+4>0  x^2 +3x+2>0  (x+1)(x+2)>0⇒ x>−1 or x<−2  −−−−−−−−−−−−−−−−−−−−−−−−−−  In all x>−1 or x<−2.

$$\mid{u}\left({x}\right)\mid<{a}\Rightarrow−{a}<{u}\left({x}\right)<{a}. \\ $$ $$\therefore\mid\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\mid<\mathrm{3}\Rightarrow−\mathrm{3}<\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}<\mathrm{3}. \\ $$ $${Now},\:{x}^{\mathrm{2}} +{x}+\mathrm{1}>\mathrm{0}\:\forall{x}\in\mathbb{R}. \\ $$ $${To}\:{see}\:{this}\:{observe}\:{that}\: \\ $$ $${x}^{\mathrm{2}} +{x}+\mathrm{1}=\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\:{and}\:{for}\:\forall{x}\in\mathbb{R}, \\ $$ $${min}\left(\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\right)=\frac{\mathrm{3}}{\mathrm{4}}>\mathrm{0}.\:\Rightarrow{x}^{\mathrm{2}} +{x}+\mathrm{1}>\mathrm{0}\:\forall{x}\in\mathbb{R}. \\ $$ $$\therefore\:−\mathrm{3}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)<{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}<\mathrm{3}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$ $$−−−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$ $${For}\:{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}>−\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{3} \\ $$ $$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}>\mathrm{0}\Rightarrow\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}>\mathrm{0}\:{which}\:{is}\:{true}\:\forall{x}\in\mathbb{R}. \\ $$ $$−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$ $${For}\:{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}<\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3} \\ $$ $$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{4}>\mathrm{0} \\ $$ $${x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}>\mathrm{0} \\ $$ $$\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)>\mathrm{0}\Rightarrow\:{x}>−\mathrm{1}\:{or}\:{x}<−\mathrm{2} \\ $$ $$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$ $${In}\:{all}\:{x}>−\mathrm{1}\:{or}\:{x}<−\mathrm{2}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com