Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76112 by Maclaurin Stickker last updated on 23/Dec/19

If the sides of a triangle are consecutive  integers and the maximum angle  is twice the minimum, determine  the sides of the triangle.

Ifthesidesofatriangleareconsecutiveintegersandthemaximumangleistwicetheminimum,determinethesidesofthetriangle.

Answered by mr W last updated on 24/Dec/19

say the sides are n−1,n,n+1  cos θ_(max) =(((n−1)^2 +n^2 −(n+1)^2 )/(2(n−1)n))=((n−4)/(2(n−1)))  cos θ_(min) =(((n+1)^2 +n^2 −(n−1)^2 )/(2(n+1)n))=((n+4)/(2(n+1)))  θ_(max) =2θ_(min)   cos θ_(max) =2 cos^2  θ_(min) −1  ((n−4)/(2(n−1)))=2×(((n+4)^2 )/(4(n+1)^2 ))−1  ((n−4)/(n−1))=((4n+14−n^2 )/(n^2 +2n+1))  2n^3 −7n^2 −17n+10=0  (n+2)(n−5)(2n−1)=0  ⇒n=5  ⇒sides are 4, 5 and 6.

saythesidesaren1,n,n+1cosθmax=(n1)2+n2(n+1)22(n1)n=n42(n1)cosθmin=(n+1)2+n2(n1)22(n+1)n=n+42(n+1)θmax=2θmincosθmax=2cos2θmin1n42(n1)=2×(n+4)24(n+1)21n4n1=4n+14n2n2+2n+12n37n217n+10=0(n+2)(n5)(2n1)=0n=5sidesare4,5and6.

Commented by Maclaurin Stickker last updated on 24/Dec/19

I did by the same way, but I wasn′t  sure. Thank you for the great  answer.

Ididbythesameway,butIwasntsure.Thankyouforthegreatanswer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com