Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 76167 by Master last updated on 24/Dec/19

Answered by behi83417@gmail.com last updated on 24/Dec/19

⇒ { ((3x−x^2 −3y+xy=1−3x−xy+3x^2 y)),((2x−x^2 +2y−xy=1−2x+xy−2x^2 y)) :}  ⇒ { ((x−5y+2xy=−x−2xy+5x^2 y)),((5x−2x^2 −y=2−5x+x^2 y)) :}  ⇒ { ((2x−5y+4xy−5x^2 y=0)),((10x−y−2x^2 −x^2 y−2=0⇒y=((10x−2−2x^2 )/(1+x^2 )))) :}  2x−5((−2x^2 +10x−2)/(1+x^2 ))+4x((−2x^2 +10x−2)/(1+x^2 ))−5x^2 ((−2x^2 +10x−2)/(1+x^2 ))=0  2x(1+x^2 )−5(−2x^2 +10x−2)+4x(−2x^2 +10x−2)−5x^2 (−2x^2 +10x−2)=0  ⇒2x+2x^3 +10x^2 −50x+10−8x^3 +40x^2 −8x+20x^4 −50x^3 +10x^2 =0  ⇒10x^4 −28x^3 +30x^2 −28x+5=0  ⇒ { ((x=0.22⇒y=0.098)),((x=1.93⇒y=2.1)) :}

{3xx23y+xy=13xxy+3x2y2xx2+2yxy=12x+xy2x2y{x5y+2xy=x2xy+5x2y5x2x2y=25x+x2y{2x5y+4xy5x2y=010xy2x2x2y2=0y=10x22x21+x22x52x2+10x21+x2+4x2x2+10x21+x25x22x2+10x21+x2=02x(1+x2)5(2x2+10x2)+4x(2x2+10x2)5x2(2x2+10x2)=02x+2x3+10x250x+108x3+40x28x+20x450x3+10x2=010x428x3+30x228x+5=0{x=0.22y=0.098x=1.93y=2.1

Answered by vishalbhardwaj last updated on 24/Dec/19

(x−y)(3−x)=(1−3x)(1−xy)  3x−x^2 −3y+xy=1−xy−3x+3x^2 y  −x^2 +6x=−2xy+3y+3x^2 y+1  −x^2 +6x−1=y(−2x+3+3x^2 )  ⇒ y= ((6x−x^2 −1)/(3x^2 −2x+3))   (i)  and in the same way  for second equation    (x+y)(2−x)=(1+xy)(1−2x)  2x−x^2 +2y−xy=1−2x+xy−2x^2 y  −x^2 +4x−1= 2xy−2y−2x^2 y  −x^2 +4x−1=y(2x−2−2x^2 )   ⇒ y = ((4x−x^2 −1)/(2x−2−2x^2 ))   (ii)  by eq (i) and (ii)   ⇒ ((4x−x^2 −1)/(2x−2−2x^2 ))   = ((6x−x^2 −1)/(3x^2 −2x+3))      ⇒  (4x−x^2 −1)(3x^2 −2x+3)          = (6x−x^2 −1)(2x−2−2x^2 )    ⇒  12x^3 −8x^2 +12x−3x^4 +2x^3 −3x^2 −3x^2 +2x−3         = 12x^2 −12x−12x^3 −2x^3 +2x^2 +2x^4 −2x+2+2x^2   ⇒ −5x^4 +28x^3 −30x^2 +28x−5=0  please help for        −5x^4 +28x^3 −30x^2 +28x−5=0

(xy)(3x)=(13x)(1xy)3xx23y+xy=1xy3x+3x2yx2+6x=2xy+3y+3x2y+1x2+6x1=y(2x+3+3x2)y=6xx213x22x+3(i)andinthesamewayforsecondequation(x+y)(2x)=(1+xy)(12x)2xx2+2yxy=12x+xy2x2yx2+4x1=2xy2y2x2yx2+4x1=y(2x22x2)y=4xx212x22x2(ii)byeq(i)and(ii)4xx212x22x2=6xx213x22x+3(4xx21)(3x22x+3)=(6xx21)(2x22x2)12x38x2+12x3x4+2x33x23x2+2x3=12x212x12x32x3+2x2+2x42x+2+2x25x4+28x330x2+28x5=0pleasehelpfor5x4+28x330x2+28x5=0

Answered by mind is power last updated on 24/Dec/19

x=coth(a)  y=coth(b)  coth hase range of ]−∞,+∞[   ⇒ we can use this sbstitution  ⇒((x−y)/(1−xy))=coth(a−b)  ((x+y)/(1+xy))=coth(a+b)  let vothc=((1/3))  ((1−3x)/(3−x))=(((1/3)−x)/(1−(1/3).x))=((coth(c)−coth(a))/(1−coth(c)coth(a)))=th(c−a)  coth(d)=(1/2)  ⇒((1−2x)/(2−x))=(((1/2)−x)/(1−(1/2).x))=((coth(d)−coth(a))/(1−coth(a).coth(d)))=coth(d−a)  ⇔   { ((coth(a−b)=coth(c−a))),((coth(a+b)=coth(d−a))) :}  coth(x)=coth(y)⇔x=y  since coth′(x)=((−1)/(sh^2 (x)))<0  ⇒ { ((a−b=c−a)),((a+b=d−a)) :}  ⇒ { ((2a−b=c)),((2a+b=d)) :}  b=((d−c)/2)  a=((d−b)/2)

x=coth(a)y=coth(b)cothhaserangeof],+[wecanusethissbstitutionxy1xy=coth(ab)x+y1+xy=coth(a+b)letvothc=(13)13x3x=13x113.x=coth(c)coth(a)1coth(c)coth(a)=th(ca)coth(d)=1212x2x=12x112.x=coth(d)coth(a)1coth(a).coth(d)=coth(da){coth(ab)=coth(ca)coth(a+b)=coth(da)coth(x)=coth(y)x=ysincecoth(x)=1sh2(x)<0{ab=caa+b=da{2ab=c2a+b=db=dc2a=db2

Commented by Master last updated on 25/Dec/19

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com