Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76194 by abdomathmax last updated on 25/Dec/19

calculate ∫_0 ^∞     ((cos(x^2 ))/(x^4 −x^2  +1))dx

calculate0cos(x2)x4x2+1dx

Commented by abdomathmax last updated on 25/Dec/19

let A =∫_0 ^∞   ((cos(x^2 ))/(x^4 −x^2  +1))dx ⇒A =(1/2) ∫_(−∞) ^(+∞)  ((cos(x^2 ))/(x^4 −x^2  +1))dx  ⇒2A =Re (∫_(−∞) ^(+∞)  (e^(ix^2 ) /(x^4 −x^2 +1))dx) let  W(z) =(e^(iz^2 ) /(z^4 −z^2  +1))  poles of W?  z^4 −z^2  +1 =0 ⇒t^2 −t +1 =0  with t=z^2   Δ=1−4=−3 ⇒t_1 =((1+(√3))/2) and t_2 =((1−(√3))/2)  t_1 =e^((iπ)/3)   and t_2 =e^((iπ)/3)  ⇒W(z) =(e^(iz^2 ) /((z^2 −e^((iπ)/3) )(z^2 −e^(−((iπ)/3)) )))  =(e^(iz^2 ) /((z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^(−((iπ)/6)) )))  ∫_(−∞) ^(+∞)   W(z)dz =2iπ { Res(W,e^((iπ)/6) ) +Res(W,−e^(−((iπ)/6)) )}  we have Res(W, e^((iπ)/6) ) =(e^(i(((iπ)/3))) /(2e^((iπ)/6) (e^((iπ)/3) −e^(−((iπ)/3)) )))  =((e^(−(π/3))  e^(−((iπ)/6)) )/(4 sin((π/3)))) =((e^(−(π/3))  e^(−((iπ)/6)) )/(4((√3)/2))) =(e^(−(π/3)) /(2(√3))) e^(−((iπ)/6))   Res(W,−e^(−((iπ)/6)) ) =(e^(i(−((iπ)/3))) /((−2 e^(−((iπ)/6)) )( e^(−((iπ)/3)) −e^((iπ)/3) )))  =(e^(π/3) /(4 sin((π/3))))e^((iπ)/6)  =((e^(π/3)  e^((iπ)/3) )/(4 ((√3)/2))) =((e^(π/3)  e^((iπ)/6) )/(2(√3))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =((2iπ)/(2(√3))){ e^(−(π/3))  e^(−((iπ)/6))  +e^(π/3)  e^((iπ)/6) }  =((iπ)/(√3)){ e^(−(π/3)) ( ((√3)/2)−(i/2))+e^(π/3) (((√3)/2)+(i/2))}  =(π/(√3)){i((√3)/2) e^(−(π/3))  +(1/2)e^(−(π/3))  +i((√3)/2)e^(π/3) −(1/2)e^(π/3) } ⇒  2A =−(π/(2(√3)))( e^(π/3)  −e^(−(π/3)) ) ⇒  A =−(π/(4(√3)))( e^(π/3)  −e^(−(π/3)) )=(π/(4(√3)))( e^(−(π/3)) −e^(π/3) )  ×  ×

letA=0cos(x2)x4x2+1dxA=12+cos(x2)x4x2+1dx2A=Re(+eix2x4x2+1dx)letW(z)=eiz2z4z2+1polesofW?z4z2+1=0t2t+1=0witht=z2Δ=14=3t1=1+32andt2=132t1=eiπ3andt2=eiπ3W(z)=eiz2(z2eiπ3)(z2eiπ3)=eiz2(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)+W(z)dz=2iπ{Res(W,eiπ6)+Res(W,eiπ6)}wehaveRes(W,eiπ6)=ei(iπ3)2eiπ6(eiπ3eiπ3)=eπ3eiπ64sin(π3)=eπ3eiπ6432=eπ323eiπ6Res(W,eiπ6)=ei(iπ3)(2eiπ6)(eiπ3eiπ3)=eπ34sin(π3)eiπ6=eπ3eiπ3432=eπ3eiπ623+W(z)dz=2iπ23{eπ3eiπ6+eπ3eiπ6}=iπ3{eπ3(32i2)+eπ3(32+i2)}=π3{i32eπ3+12eπ3+i32eπ312eπ3}2A=π23(eπ3eπ3)A=π43(eπ3eπ3)=π43(eπ3eπ3)××

Terms of Service

Privacy Policy

Contact: info@tinkutara.com