All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 76194 by abdomathmax last updated on 25/Dec/19
calculate∫0∞cos(x2)x4−x2+1dx
Commented by abdomathmax last updated on 25/Dec/19
letA=∫0∞cos(x2)x4−x2+1dx⇒A=12∫−∞+∞cos(x2)x4−x2+1dx⇒2A=Re(∫−∞+∞eix2x4−x2+1dx)letW(z)=eiz2z4−z2+1polesofW?z4−z2+1=0⇒t2−t+1=0witht=z2Δ=1−4=−3⇒t1=1+32andt2=1−32t1=eiπ3andt2=eiπ3⇒W(z)=eiz2(z2−eiπ3)(z2−e−iπ3)=eiz2(z−eiπ6)(z+eiπ6)(z−e−iπ6)(z+e−iπ6)∫−∞+∞W(z)dz=2iπ{Res(W,eiπ6)+Res(W,−e−iπ6)}wehaveRes(W,eiπ6)=ei(iπ3)2eiπ6(eiπ3−e−iπ3)=e−π3e−iπ64sin(π3)=e−π3e−iπ6432=e−π323e−iπ6Res(W,−e−iπ6)=ei(−iπ3)(−2e−iπ6)(e−iπ3−eiπ3)=eπ34sin(π3)eiπ6=eπ3eiπ3432=eπ3eiπ623⇒∫−∞+∞W(z)dz=2iπ23{e−π3e−iπ6+eπ3eiπ6}=iπ3{e−π3(32−i2)+eπ3(32+i2)}=π3{i32e−π3+12e−π3+i32eπ3−12eπ3}⇒2A=−π23(eπ3−e−π3)⇒A=−π43(eπ3−e−π3)=π43(e−π3−eπ3)××
Terms of Service
Privacy Policy
Contact: info@tinkutara.com