Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 76265 by A8;15: last updated on 25/Dec/19

Answered by Tanmay chaudhury last updated on 26/Dec/19

S=cosα+cos2α+cos3α+...+cosnα  multiply each term by 2sin((α/2)) and apply trigo  formula and adding them  2cosαsin((α/2))=sin(((3α)/2))−sin((α/2))  2cos2αsin((α/2))=sin(((5α)/2))−sin(((3α)/2))  ...  ...  2cosnαsin((α/2))=sin(((2n+1)/2))α−sin(((2n−1)/2))α  add them  2sin((α/2))×S=sin(((2n+1)/2))α−sin((α/2))  S=(1/(2sin((α/2))))×[sin(((2n+1)/2))α−sin((α/2))]

S=cosα+cos2α+cos3α+...+cosnαmultiplyeachtermby2sin(α2)andapplytrigoformulaandaddingthem2cosαsin(α2)=sin(3α2)sin(α2)2cos2αsin(α2)=sin(5α2)sin(3α2)......2cosnαsin(α2)=sin(2n+12)αsin(2n12)αaddthem2sin(α2)×S=sin(2n+12)αsin(α2)S=12sin(α2)×[sin(2n+12)αsin(α2)]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com