Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76306 by Hassen_Timol last updated on 26/Dec/19

z = a + bi  Z = ((−7 + z)/(−3 + iz))    What is the equation of all the points M  of coordonates (a,b) such as Z is real ?

z=a+biZ=7+z3+izWhatistheequationofallthepointsMofcoordonates(a,b)suchasZisreal?

Answered by mr W last updated on 26/Dec/19

Z=((−7+a+bi)/(−3+i(a+bi)))  =(((−7+a)+bi)/((−3−b)+ai))  =(([(−7+a)+bi][(−3−b)−ai])/([(−3−b)+ai][(−3−b)−ai]))  =(((−7+a)(−3−b)+ab+[(−3−b)b−(−7+a)a]i)/((−3−b)^2 +a^2 ))  =((21−3a+7b+(7a−3b−a^2 −b^2 )i)/((−3−b)^2 +a^2 ))  such that Z is real,  7a−3b−a^2 −b^2 =0  ⇒(a−(7/2))^2 +(b+(3/2))^2 =((7/2))^2 +((3/2))^2   ⇒(a−(7/2))^2 +(b+(3/2))^2 =(((√(58))/2))^2   locus of M is a circle with radius  ((√(58))/2) and center at ((7/2),−(3/2)).

Z=7+a+bi3+i(a+bi)=(7+a)+bi(3b)+ai=[(7+a)+bi][(3b)ai][(3b)+ai][(3b)ai]=(7+a)(3b)+ab+[(3b)b(7+a)a]i(3b)2+a2=213a+7b+(7a3ba2b2)i(3b)2+a2suchthatZisreal,7a3ba2b2=0(a72)2+(b+32)2=(72)2+(32)2(a72)2+(b+32)2=(582)2locusofMisacirclewithradius582andcenterat(72,32).

Commented by Hassen_Timol last updated on 26/Dec/19

Thank you Sir, may God bless you!

ThankyouSir,mayGodblessyou!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com