Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76323 by aliesam last updated on 26/Dec/19

Commented by mind is power last updated on 27/Dec/19

I_n =∫cos^n (x)e^(ax) dx  by part  I_n =cos^n (x)(e^(ax) /a)+(1/a)∫ncos^(n−1) (x)e^(ax) sin(x)dx  aI_n =cos^n (x)e^(ax) +n∫cos^(n−1) (x)sin(x)e^(ax) dx  by part withe u′=sin(x)e^(ax) ,v=cos^(n−1) (x)  v′=−(n−1)cos^(n−2) (x)sin(x)  u=∫Im(e^(x(i+a)) )dx  =Im((e^(ax) .e^(ix) )/(i+a))=((e^(ax) (asin(x)−cos(x)))/(a^2 +1))  u=((e^(ax) (asin(x)−cos(x)))/(a^2 +1))  aI_n =cos^n (x)e^(ax) +n[((e^(ax) (asin(x)−cos(x))cos^(n−1) (x))/(a^2 +1))]+n(n−1)∫((sin(x)cos^(n−2) (x).e^(ax) (asin(x)−cos(x)))/(a^2 +1))dx  a(a^2 +1)I_n =(a^2 +1)cos^n (x)e^(ax) +ne^(ax) (asin(x)−cos(x))cos^(n−1) (x))+n(n−1)∫acos^(n−2) (x)(1−cos^2 (x))dx−n(n−1)∫sin(x)cos^(n−1) (x)e^(ax) dx  ⇔a(a^2 +1)I_n =e^(ax) ((a^2 +1−n)cos^n (x)+nasin(x))+n(n−1)aI_(n−2) −an(n−1)I_n −n(n−1)∫sin(x)cos^(n−1) (x)e^(ax) dx  ∫sin(x)cos^(n−1) (x)e^(ax) =−((cos^n (x)e^(ax) )/n)+(a/n)∫cos^n (x)e^(ax) dx  =−((cos^n (x)e^(ax) )/n)+((aI_n )/n)  ⇒a(a^2 +1)I_n =e^(ax) (a^2 cos^n (x)+nasin(x))+n(n−1)aI_(n−2) −an(n−1)I_n −a(n−1)I_n   ⇒a(a^2 +1)I_n +a(n−1)I_n +an(n−1)I_n =e^(ax) a^2 cos^(n−1) (x)(1+(n/a)sin(x))+an(n−1)I_(n−2)   a(a^2 +n^2 )I_n =e^(ax) a^2 cos^(n−1) (x)(1+(n/a)sin(x))+an(n−1)I_(n−2)   ⇒I_n =((e^(ax) acos^(n−1) (x))/(a^2 +n^2 ))(1+((nsin(x))/a))+((n(n−1))/(a^2 +n^2 ))I_(n−2)

In=cosn(x)eaxdxbypartIn=cosn(x)eaxa+1ancosn1(x)eaxsin(x)dxaIn=cosn(x)eax+ncosn1(x)sin(x)eaxdxbypartwitheu=sin(x)eax,v=cosn1(x)v=(n1)cosn2(x)sin(x)u=Im(ex(i+a))dx=Imeax.eixi+a=eax(asin(x)cos(x))a2+1u=eax(asin(x)cos(x))a2+1aIn=cosn(x)eax+n[eax(asin(x)cos(x))cosn1(x)a2+1]+n(n1)sin(x)cosn2(x).eax(asin(x)cos(x))a2+1dxa(a2+1)In=(a2+1)cosn(x)eax+neax(asin(x)cos(x))cosn1(x))+n(n1)acosn2(x)(1cos2(x))dxn(n1)sin(x)cosn1(x)eaxdxa(a2+1)In=eax((a2+1n)cosn(x)+nasin(x))+n(n1)aIn2an(n1)Inn(n1)sin(x)cosn1(x)eaxdxsin(x)cosn1(x)eax=cosn(x)eaxn+ancosn(x)eaxdx=cosn(x)eaxn+aInna(a2+1)In=eax(a2cosn(x)+nasin(x))+n(n1)aIn2an(n1)Ina(n1)Ina(a2+1)In+a(n1)In+an(n1)In=eaxa2cosn1(x)(1+nasin(x))+an(n1)In2a(a2+n2)In=eaxa2cosn1(x)(1+nasin(x))+an(n1)In2In=eaxacosn1(x)a2+n2(1+nsin(x)a)+n(n1)a2+n2In2

Commented by aliesam last updated on 27/Dec/19

thank you sir . nice work

thankyousir.nicework

Terms of Service

Privacy Policy

Contact: info@tinkutara.com