All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 76323 by aliesam last updated on 26/Dec/19
Commented by mind is power last updated on 27/Dec/19
In=∫cosn(x)eaxdxbypartIn=cosn(x)eaxa+1a∫ncosn−1(x)eaxsin(x)dxaIn=cosn(x)eax+n∫cosn−1(x)sin(x)eaxdxbypartwitheu′=sin(x)eax,v=cosn−1(x)v′=−(n−1)cosn−2(x)sin(x)u=∫Im(ex(i+a))dx=Imeax.eixi+a=eax(asin(x)−cos(x))a2+1u=eax(asin(x)−cos(x))a2+1aIn=cosn(x)eax+n[eax(asin(x)−cos(x))cosn−1(x)a2+1]+n(n−1)∫sin(x)cosn−2(x).eax(asin(x)−cos(x))a2+1dxa(a2+1)In=(a2+1)cosn(x)eax+neax(asin(x)−cos(x))cosn−1(x))+n(n−1)∫acosn−2(x)(1−cos2(x))dx−n(n−1)∫sin(x)cosn−1(x)eaxdx⇔a(a2+1)In=eax((a2+1−n)cosn(x)+nasin(x))+n(n−1)aIn−2−an(n−1)In−n(n−1)∫sin(x)cosn−1(x)eaxdx∫sin(x)cosn−1(x)eax=−cosn(x)eaxn+an∫cosn(x)eaxdx=−cosn(x)eaxn+aInn⇒a(a2+1)In=eax(a2cosn(x)+nasin(x))+n(n−1)aIn−2−an(n−1)In−a(n−1)In⇒a(a2+1)In+a(n−1)In+an(n−1)In=eaxa2cosn−1(x)(1+nasin(x))+an(n−1)In−2a(a2+n2)In=eaxa2cosn−1(x)(1+nasin(x))+an(n−1)In−2⇒In=eaxacosn−1(x)a2+n2(1+nsin(x)a)+n(n−1)a2+n2In−2
Commented by aliesam last updated on 27/Dec/19
thankyousir.nicework
Terms of Service
Privacy Policy
Contact: info@tinkutara.com