Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 76340 by Master last updated on 26/Dec/19

Commented by behi83417@gmail.com last updated on 26/Dec/19

x=−1,0

x=1,0

Answered by behi83417@gmail.com last updated on 26/Dec/19

−3x^2 +2x+5=(1+x)(−3x+5)  ⇒(1+x)(−3x+5)=(√((1+x)(1−x)))(4x^2 +8x+5)  1)[1+x=0⇒x=−1]  2) (1+x)(−3x+5)^2 =(1−x)(4x^2 +8x+5)^2   (1+x)(9x^2 −30x+25)=(1−x)(16x^4 +64x^2 +25+64x^3 +40x^2 +80x)  ⇒9x^2 −30x+25+9x^3 −30x^2 +25x=        16x^4 +64x^2 +25+64x^3 +40x^2 +25x      −16x^5 −64x^3 −25x−64x^4 −40x^3 −80x^2   ⇒−16x^5 −48x^4 −49x^3 +45x^2 +5x=0  ⇒−x(16x^4 +48x^3 +49x^2 −45x−5)=0  ⇒[x=0]  16x^4 +48x^3 +49x^2 −45x−5=0  ⇒x=−0.1  ,  0.623

3x2+2x+5=(1+x)(3x+5)(1+x)(3x+5)=(1+x)(1x)(4x2+8x+5)1)[1+x=0x=1]2)(1+x)(3x+5)2=(1x)(4x2+8x+5)2(1+x)(9x230x+25)=(1x)(16x4+64x2+25+64x3+40x2+80x)9x230x+25+9x330x2+25x=16x4+64x2+25+64x3+40x2+25x16x564x325x64x440x380x216x548x449x3+45x2+5x=0x(16x4+48x3+49x245x5)=0[x=0]16x4+48x3+49x245x5=0x=0.1,0.623

Answered by mr W last updated on 26/Dec/19

−1≤x≤1  (5−3x)(1+x)=(√((1−x)(1+x)))(4(x+1)^2 +1)  x=−1 is a solution.  for x≠−1  (5−3x)(√(1+x))=(√((1−x)))(4(x+1)^2 +1)  (5−3x)^2 (1+x)=(1−x)(4(x+1)^2 +1)^2   let t=x+1  (8−3t)^2 t=(2−t)(4t^2 +1)^2   (64−48t+9t^2 )t=(2−t)(16t^4 +8t^2 +1)  16t^5 −32t^4 +17t^3 −64t^2 +65t−2=0  (t−1)(t^2 +t+2)(16t^2 −32t+1)=0  t=1 ⇒x=0  t=((16±(√(16^2 −16)))/(16))=1±((√(15))/4) ⇒x=±((√(15))/4)  t=((−1±i(√7))/2) ⇒x=((−3±i(√7))/2)    summary of all solutions:  x=0  x=−1  x=±((√(15))/4)≈±0.9682  x=((−3±i(√7))/2)

1x1(53x)(1+x)=(1x)(1+x)(4(x+1)2+1)x=1isasolution.forx1(53x)1+x=(1x)(4(x+1)2+1)(53x)2(1+x)=(1x)(4(x+1)2+1)2lett=x+1(83t)2t=(2t)(4t2+1)2(6448t+9t2)t=(2t)(16t4+8t2+1)16t532t4+17t364t2+65t2=0(t1)(t2+t+2)(16t232t+1)=0t=1x=0t=16±1621616=1±154x=±154t=1±i72x=3±i72summaryofallsolutions:x=0x=1x=±154±0.9682x=3±i72

Commented by MJS last updated on 26/Dec/19

the complex solutions don′t fit the given equation

thecomplexsolutionsdontfitthegivenequation

Commented by mr W last updated on 26/Dec/19

how to see this?  due to (√(1−x^2 )) ?

howtoseethis?dueto1x2?

Commented by MJS last updated on 26/Dec/19

yes.

yes.

Commented by mr W last updated on 26/Dec/19

thanks sir!

thankssir!

Answered by MJS last updated on 26/Dec/19

squaring and transforming  ⇒  x(x+1)(x^2 +3x+4)(x^2 −((15)/(16)))=0  ⇒  x_1 =−1  x_2 =−((√(15))/4)  x_3 =0  x_4 =((√(15))/4)  x_(5, 6) =−(3/2)±((√7)/2)i (don′t fit the given equation)    other path  let x=((2t)/(t^2 +1))  ⇒  5+((4t)/(t^2 +1))−((12t^2 )/((t^2 +1)^2 ))=((1−t^2 )/(t^2 +1))(((16t^2 )/((t^2 +1)^2 ))+((16t)/(t^2 +1))+5)  ⇒  t(t+1)(t^2 +t+2)(t^2 −(3/5))=0  ⇒  t_1 =−1 ⇒ x_1 =−1  t_2 =−((√(15))/5) ⇒ x_2 =−((√(15))/4)  t_3 =0 ⇒ x_3 =0  t_4 =((√(15))/5) ⇒ x_4 =((√(15))/4)  t_(5, 6) =−(1/2)±((√7)/2)i ⇒ x_(5, 6) =−(3/2)±((√7)/2)i (false)

squaringandtransformingx(x+1)(x2+3x+4)(x21516)=0x1=1x2=154x3=0x4=154x5,6=32±72i(dontfitthegivenequation)otherpathletx=2tt2+15+4tt2+112t2(t2+1)2=1t2t2+1(16t2(t2+1)2+16tt2+1+5)t(t+1)(t2+t+2)(t235)=0t1=1x1=1t2=155x2=154t3=0x3=0t4=155x4=154t5,6=12±72ix5,6=32±72i(false)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com