Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 76346 by Maclaurin Stickker last updated on 26/Dec/19

Commented by Maclaurin Stickker last updated on 26/Dec/19

1. Find x as a function of b and c.  2. Under what conditions does the  problem admit a solution?

1.Findxasafunctionofbandc.2.Underwhatconditionsdoestheproblemadmitasolution?

Commented by Maclaurin Stickker last updated on 26/Dec/19

I find x=(√((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5))  I didn′t understand the second  question, could anyone explain?

Ifindx=b2+c2±23b2c2b4c45Ididntunderstandthesecondquestion,couldanyoneexplain?

Commented by Maclaurin Stickker last updated on 26/Dec/19

The answer of the book is:  (2/((√5)+1))≤(b/c)≤(((√5)+1)/2) . How can I get this  result?

Theanswerofthebookis:25+1bc5+12.HowcanIgetthisresult?

Commented by MJS last updated on 26/Dec/19

3b^2 c^2 −b^4 −c^4 ≥0  b^2 +c^2 ∓2(√(3b^2 c^2 −b^4 −c^4 ))≥0  you have to solve these

3b2c2b4c40b2+c223b2c2b4c40youhavetosolvethese

Commented by Maclaurin Stickker last updated on 26/Dec/19

Thank you, sir.

Thankyou,sir.

Answered by mr W last updated on 26/Dec/19

Commented by mr W last updated on 26/Dec/19

b sin θ=x  b cos θ=(√(c^2 −x^2 ))+x  ⇒b^2 =x^2 +((√(c^2 −x^2 ))+x)^2   ⇒b^2 =x^2 +c^2 +2x(√(c^2 −x^2 ))  ⇒b^2 −c^2 −x^2 =2x(√(c^2 −x^2 ))  ⇒(b^2 −c^2 )^2 −2(b^2 −c^2 )x^2 +x^4 =4x^2 (c^2 −x^2 )  ⇒5x^4 −2(b^2 +c^2 )x^2 +(b^2 −c^2 )^2 =0  ⇒x^2 =((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5)  ⇒x=(√((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5))    b cos θ=(√(c^2 −b^2 sin^2  θ))+b sin θ  b(cos θ−sin θ)=(√(c^2 −b^2 sin^2  θ))  b^2 (1−sin 2θ)=c^2 −b^2 sin^2  θ  ⇒((b/c))^2 =(1/(1+sin^2  θ−sin 2θ))  ⇒((b/c))^2 =(2/(3−(cos 2θ+2sin 2θ)))  ⇒((b/c))^2 =(2/(3−(√5) cos (2θ−α)))  with α=tan^(−1) 2  ⇒((b/c))_(max) ^2 =(2/(3−(√5)))=((((√5)+1)/2))^2   ⇒((b/c))_(max) =(((√5)+1)/2)  at 2θ−α=0  ⇒θ=(α/2)=((tan^(−1) 2)/2)=31.7°  ⇒((b/c))_(min) ^2 =(2/(3+(√5)))=((2/((√5)+1)))^2   ⇒((b/c))_(min) =(2/((√5)+1))  at 2θ−α=180°  ⇒θ=((α+180)/2)=((tan^(−1) 2+180)/2)=121.7°  ⇒(2/((√5)+1))≤(b/c)≤(((√5)+1)/2)

bsinθ=xbcosθ=c2x2+xb2=x2+(c2x2+x)2b2=x2+c2+2xc2x2b2c2x2=2xc2x2(b2c2)22(b2c2)x2+x4=4x2(c2x2)5x42(b2+c2)x2+(b2c2)2=0x2=b2+c2±23b2c2b4c45x=b2+c2±23b2c2b4c45bcosθ=c2b2sin2θ+bsinθb(cosθsinθ)=c2b2sin2θb2(1sin2θ)=c2b2sin2θ(bc)2=11+sin2θsin2θ(bc)2=23(cos2θ+2sin2θ)(bc)2=235cos(2θα)withα=tan12(bc)max2=235=(5+12)2(bc)max=5+12at2θα=0θ=α2=tan122=31.7°(bc)min2=23+5=(25+1)2(bc)min=25+1at2θα=180°θ=α+1802=tan12+1802=121.7°25+1bc5+12

Commented by mr W last updated on 26/Dec/19

i got this result too, sir.

igotthisresulttoo,sir.

Commented by Maclaurin Stickker last updated on 26/Dec/19

thanks for correcting

thanksforcorrecting

Commented by mr W last updated on 26/Dec/19

i pushed the ⋗ button too early (unintended)  before i checked my working, and  you commented too fast :)

ipushedthebuttontooearly(unintended)beforeicheckedmyworking,andyoucommentedtoofast:)

Commented by Maclaurin Stickker last updated on 26/Dec/19

I got x by using algebra:  h_(x ) =((2(√(p(p−x)(p−b)(p−c))))/x)  p=((b+c+x)/2)  (x^2 /2)=(√((((b+c+x)/2))(((b+c−x)/2))(((−b+c+x)/2))(((b−c+x)/2))))  4x^4 =(b^2 +2bc+c^2 −x^2 )(x^2 −c^2 +2bc−b^2 )  4x^4 =2b^2 c^2 −b^4 −c^4 −x^4 +2b^2 x^2 +2c^2 x^2   5x^4 =−(b^2 −c^2 )^2 +x^2 (2b^2 +2c^2 )  5x^4 −x^2 (2b^2 +2c^2 )+(b^2 −c^2 )^2 =0  let y=x^2   5y^2 −y(2b^2 +2c^2 )+(b^2 −c^2 )^2 =0  y=((2b^2 +c^2 ±4(√(3b^2 c^2 −b^4 −c^4 )))/(2.5))  y=((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5)  x^2 =((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5)  x=(√((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5))

Igotxbyusingalgebra:hx=2p(px)(pb)(pc)xp=b+c+x2x22=(b+c+x2)(b+cx2)(b+c+x2)(bc+x2)4x4=(b2+2bc+c2x2)(x2c2+2bcb2)4x4=2b2c2b4c4x4+2b2x2+2c2x25x4=(b2c2)2+x2(2b2+2c2)5x4x2(2b2+2c2)+(b2c2)2=0lety=x25y2y(2b2+2c2)+(b2c2)2=0y=2b2+c2±43b2c2b4c42.5y=b2+c2±23b2c2b4c45x2=b2+c2±23b2c2b4c45x=b2+c2±23b2c2b4c45

Commented by Maclaurin Stickker last updated on 26/Dec/19

The result in the book is  x=(√((b^2 +c^2 ±2(√(3b^2 c^2 −b^4 −c^4 )))/5)).

Theresultinthebookisx=b2+c2±23b2c2b4c45.

Commented by mr W last updated on 26/Dec/19

very nice sir!  this path is the one which i also  thought of at first. but i did decide  to use an other path by using a  parameter (e.g. angle θ) such that  the part two of the question also gets  answered.

verynicesir!thispathistheonewhichialsothoughtofatfirst.butididdecidetouseanotherpathbyusingaparameter(e.g.angleθ)suchthattheparttwoofthequestionalsogetsanswered.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com