Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 7649 by Rohit last updated on 07/Sep/16

the sum of n term of two A.P are in   ratio ((7n+1)/(4n+27)) .find the ratio of their  11^(th)   term.

$${the}\:{sum}\:{of}\:{n}\:{term}\:{of}\:{two}\:{A}.{P}\:{are}\:{in}\: \\ $$$${ratio}\:\frac{\mathrm{7}{n}+\mathrm{1}}{\mathrm{4}{n}+\mathrm{27}}\:.{find}\:{the}\:{ratio}\:{of}\:{their}\:\:\mathrm{11}^{{th}} \\ $$$${term}. \\ $$

Commented by Rohit last updated on 07/Sep/16

answer plese.....

$${answer}\:{plese}..... \\ $$

Answered by Rasheed Soomro last updated on 07/Sep/16

Let a_(1 ) and d_1  are the first term and common difference           of first AP respectively.  And a_(2 ) and d_2  are the first term and common differnce           of  second AP respectively.  −−−−−−−−−−−−−  11th terms of the two AP ′s  are a_1 +(11−1)d_1 = a_1 +10d_1   and a_2 +(11−1)d_2 =a_2 +10d_2 . So we have to determine                                            ((a_1 +10d_1 )/(a_2 +10d_2 ))  −−−−−−−−−−−−−−  The ratio of n terms of the two AP ′s is given by  (((n/2)[2a_1 +(n−1)d_1 ])/((n/2)[2a_2 +(n−1)d_2 ]))= ((7n+1)/(4n+27))  ((2a_1 +(n−1)d_1 )/(2a_2 +(n−1)d_2 ))= ((7n+1)/(4n+27))  −−−−−−−−−−−−−−−−  Let′s determine ratio of the sums of 21 terms of the  two AP ′s  ((2a_1 +(21−1)d_1 )/(2a_2 +(21−1)d_2 ))= ((7(21)+1)/(4(21)+27))=((148)/(111))  ((2a_1 +20d_1 )/(2a_2 +20d_2 ))=((148)/(111))  ((2(a_1 +10d_1 ))/(2(a_2 +10d_2 )))=((148)/(111))  ((a_1 +10d_1 )/(a_2 +10d_2 ))=((148)/(111))  ((11th term of the 1st AP)/(11th term of the 2nd AP))=((148)/(111))

$${Let}\:{a}_{\mathrm{1}\:} {and}\:{d}_{\mathrm{1}} \:{are}\:{the}\:{first}\:{term}\:{and}\:{common}\:{difference} \\ $$$$\:\:\:\:\:\:\:\:\:{of}\:{first}\:{AP}\:{respectively}. \\ $$$${And}\:{a}_{\mathrm{2}\:} {and}\:{d}_{\mathrm{2}} \:{are}\:{the}\:{first}\:{term}\:{and}\:{common}\:{differnce} \\ $$$$\:\:\:\:\:\:\:\:\:{of}\:\:{second}\:{AP}\:{respectively}. \\ $$$$−−−−−−−−−−−−− \\ $$$$\mathrm{11}{th}\:{terms}\:{of}\:{the}\:{two}\:{AP}\:'{s}\:\:{are}\:{a}_{\mathrm{1}} +\left(\mathrm{11}−\mathrm{1}\right){d}_{\mathrm{1}} =\:{a}_{\mathrm{1}} +\mathrm{10}{d}_{\mathrm{1}} \\ $$$${and}\:{a}_{\mathrm{2}} +\left(\mathrm{11}−\mathrm{1}\right){d}_{\mathrm{2}} ={a}_{\mathrm{2}} +\mathrm{10}{d}_{\mathrm{2}} .\:{So}\:{we}\:{have}\:{to}\:{determine}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}_{\mathrm{1}} +\mathrm{10}{d}_{\mathrm{1}} }{{a}_{\mathrm{2}} +\mathrm{10}{d}_{\mathrm{2}} } \\ $$$$−−−−−−−−−−−−−− \\ $$$${The}\:{ratio}\:{of}\:{n}\:{terms}\:{of}\:{the}\:{two}\:{AP}\:'{s}\:{is}\:{given}\:{by} \\ $$$$\frac{\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} \right]}{\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} \right]}=\:\frac{\mathrm{7}{n}+\mathrm{1}}{\mathrm{4}{n}+\mathrm{27}} \\ $$$$\frac{\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} }{\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} }=\:\frac{\mathrm{7}{n}+\mathrm{1}}{\mathrm{4}{n}+\mathrm{27}} \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${Let}'{s}\:{determine}\:{ratio}\:{of}\:{the}\:{sums}\:{of}\:\mathrm{21}\:{terms}\:{of}\:{the} \\ $$$${two}\:{AP}\:'{s} \\ $$$$\frac{\mathrm{2}{a}_{\mathrm{1}} +\left(\mathrm{21}−\mathrm{1}\right){d}_{\mathrm{1}} }{\mathrm{2}{a}_{\mathrm{2}} +\left(\mathrm{21}−\mathrm{1}\right){d}_{\mathrm{2}} }=\:\frac{\mathrm{7}\left(\mathrm{21}\right)+\mathrm{1}}{\mathrm{4}\left(\mathrm{21}\right)+\mathrm{27}}=\frac{\mathrm{148}}{\mathrm{111}} \\ $$$$\frac{\mathrm{2}{a}_{\mathrm{1}} +\mathrm{20}{d}_{\mathrm{1}} }{\mathrm{2}{a}_{\mathrm{2}} +\mathrm{20}{d}_{\mathrm{2}} }=\frac{\mathrm{148}}{\mathrm{111}} \\ $$$$\frac{\mathrm{2}\left({a}_{\mathrm{1}} +\mathrm{10}{d}_{\mathrm{1}} \right)}{\mathrm{2}\left({a}_{\mathrm{2}} +\mathrm{10}{d}_{\mathrm{2}} \right)}=\frac{\mathrm{148}}{\mathrm{111}} \\ $$$$\frac{{a}_{\mathrm{1}} +\mathrm{10}{d}_{\mathrm{1}} }{{a}_{\mathrm{2}} +\mathrm{10}{d}_{\mathrm{2}} }=\frac{\mathrm{148}}{\mathrm{111}} \\ $$$$\frac{\mathrm{11}{th}\:{term}\:{of}\:{the}\:\mathrm{1}{st}\:{AP}}{\mathrm{11}{th}\:{term}\:{of}\:{the}\:\mathrm{2}{nd}\:{AP}}=\frac{\mathrm{148}}{\mathrm{111}} \\ $$$$ \\ $$

Commented by Rohit last updated on 08/Sep/16

why ratio of the sum of 21 kese aya

$${why}\:{ratio}\:{of}\:{the}\:{sum}\:{of}\:\mathrm{21}\:{kese}\:{aya} \\ $$

Commented by Rasheed Soomro last updated on 08/Sep/16

From the above  ((2a_1 +(n−1)d_1 )/(2a_2 +(n−1)d_2 ))= ((7n+1)/(4n+27))  ((2{a_1 +(((n−1)/2))d_1 })/(2{a_2 +(((n−1)/2))d_2 }))= ((7n+1)/(4n+27))  ((a_1 +(((n−1)/2))d_1 )/(a_2 +(((n−1)/2))d_2 ))= ((7n+1)/(4n+27))  We need  ((a_1 +10d_1 )/(a_2 +10d_2 ))  I-E  we need 10 in place of ((n−1)/2)  So,    ((n−1)/2)=10  n−1=20  n=21

$${From}\:{the}\:{above} \\ $$$$\frac{\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} }{\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} }=\:\frac{\mathrm{7}{n}+\mathrm{1}}{\mathrm{4}{n}+\mathrm{27}} \\ $$$$\frac{\mathrm{2}\left\{{a}_{\mathrm{1}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{1}} \right\}}{\mathrm{2}\left\{{a}_{\mathrm{2}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{2}} \right\}}=\:\frac{\mathrm{7}{n}+\mathrm{1}}{\mathrm{4}{n}+\mathrm{27}} \\ $$$$\frac{{a}_{\mathrm{1}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{1}} }{{a}_{\mathrm{2}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{2}} }=\:\frac{\mathrm{7}{n}+\mathrm{1}}{\mathrm{4}{n}+\mathrm{27}} \\ $$$${We}\:{need}\:\:\frac{{a}_{\mathrm{1}} +\mathrm{10}{d}_{\mathrm{1}} }{{a}_{\mathrm{2}} +\mathrm{10}{d}_{\mathrm{2}} } \\ $$$${I}-{E}\:\:{we}\:{need}\:\mathrm{10}\:{in}\:{place}\:{of}\:\frac{{n}−\mathrm{1}}{\mathrm{2}} \\ $$$${So},\:\:\:\:\frac{{n}−\mathrm{1}}{\mathrm{2}}=\mathrm{10} \\ $$$${n}−\mathrm{1}=\mathrm{20} \\ $$$${n}=\mathrm{21} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com