Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 76586 by Master last updated on 28/Dec/19

Commented by Master last updated on 28/Dec/19

solve please

solveplease

Commented by Tony Lin last updated on 28/Dec/19

(5)  ∫_0 ^(π/2) sin^n xcos^n xdx  =(1/2^n )∫_0 ^(π/2) sin^n (2x)dx  let 2x=u, du=2dx  (1/2^(n−1) )∫_0 ^π sin^n udu  =(1/2^(n−2) )∫_0 ^(π/2) sin^n xdx  =(1/2^(n−2) )× { (((((n−1)(n−3)∙∙∙1)/(n(n−2)∙∙∙2))×(π/2), if n is even)),(((((n−1)(n−3)∙∙∙2)/(n(n−2)∙∙∙1)), if n is odd)) :}

(5)0π2sinnxcosnxdx=12n0π2sinn(2x)dxlet2x=u,du=2dx12n10πsinnudu=12n20π2sinnxdx=12n2×{(n1)(n3)1n(n2)2×π2,ifniseven(n1)(n3)2n(n2)1,ifnisodd

Commented by john santu last updated on 28/Dec/19

sorry sir missing in line 2  (1/2^n )(2sin xcos x)^n

sorrysirmissinginline212n(2sinxcosx)n

Commented by Tony Lin last updated on 28/Dec/19

(1)  a_(n+2) =(1/a_(n+1) )+a_n   ⇒a_(n+2) a_(n+1) =a_(n+1) a_n +1  ⇒a_(2019) a_(2018)   =a_(2018) a_(2017) +1  =a_(2017) a_(2016) +2  =a_1 a_2 +2017  =2018  ⇒a_(n+1) a_n =n  (a_(2019) /a_(2017) )=((2018)/(2017))  (a_(2017) /a_(2015) )=((2016)/(2015))  (a_5 /a_3 )=(4/3)  (a_3 /a_1 )=(2/1)  ⇒a_(2019) =a_1 ×((2×4×∙∙∙×2018)/(1×3×∙∙∙×2017))  =((2018!!)/(2017!!))

(1)an+2=1an+1+anan+2an+1=an+1an+1a2019a2018=a2018a2017+1=a2017a2016+2=a1a2+2017=2018an+1an=na2019a2017=20182017a2017a2015=20162015a5a3=43a3a1=21a2019=a1×2×4××20181×3××2017=2018!!2017!!

Commented by Master last updated on 28/Dec/19

2 and 3 , 4  solution plz

2and3,4solutionplz

Commented by Master last updated on 28/Dec/19

thanks

thanks

Commented by MJS last updated on 28/Dec/19

(3) all you need is calculate the determinant...  let p=2019  −2(x−p)(x−p+1)(x−p−1)(3px+3p^2 −1)=0  ⇒  x_1 =p−1=2018  x_2 =p=2019  x_3 =p+1=2020  x_4 =((1−3p^2 )/(3p))=−((12229082)/(6057))

(3)allyouneediscalculatethedeterminant...letp=20192(xp)(xp+1)(xp1)(3px+3p21)=0x1=p1=2018x2=p=2019x3=p+1=2020x4=13p23p=122290826057

Answered by benjo 1/2 santuyy last updated on 29/Dec/19

(4) f(0)=4 →c=4  0≤f(x)≤4 for 0≤x≤3 →  ax^2  +bx+4≤4 ,   x(ax+b)≤0 , b must be negatif  so we has 0≤x≤−(b/a) .   we getting −(b/a)=3 → b =−3a , a >0 ■

(4)f(0)=4c=40f(x)4for0x3ax2+bx+44,x(ax+b)0,bmustbenegatifsowehas0x(b/a).wegetting(b/a)=3b=3a,a>0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com