All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 76630 by Rio Michael last updated on 28/Dec/19
twosequences,(un)and(vn),forn∈Nisdefinedas:{u0=3un+1=12(un+vn)and{v0=4vn+1=12(un+1+vn)a)calculateu1,v1,u2andv2b)Anothersequence(wn),isdefinedbywn=vn−un,∀n∈Nshowthatwnisaconvegentgeometricsequence.c)Expresswnasafunctionofnandobtainitslimits.d)Studythesenseofvariation(monotony)of(un)and(vn)whatcanyoudeduce?e)Consideranothersequencetndefinedbytn=un+2vn3,∀n∈Nshowthattnisaconstantsequencef)henceobtainthelimitofthesequences(un)and(vn)
Answered by mr W last updated on 29/Dec/19
un+1=12(un+vn)..(i)vn+1=12(un+1+vn)...(ii)(ii)−(i):vn+1=32un+1−12un⇒vn=32un−12un−1putthisinto(i):⇒4un+1−5un+un−1=04x2−5x+1=0(4x−1)(x−1)=0⇒x=14,x=1⇒un=A4n+Bu0=3⇒3=A+Bu1=12(3+4)=72⇒72=A4+B⇒−12=3A4⇒A=−23⇒B=3+23=113⇒un=13(11−24n)⇒vn=13(11+14n)...(b)wn=vn−un=13(11+14n)−13(11−24n)wn=14n⇒G.P.withcommonratio14....(e)tn=un+2vn3=23(11+14n)+13(11−24n)3⇒tn=113=constant
Commented by mr W last updated on 29/Dec/19
alternative:⇒4un+1−5un+un−1=0⇒4un+1−4un−(un−un−1)=0⇒(un+1−un)=14(un−un−1)⇒cn+1=14cn⇒G.P.⇒cn+1=c1(14)nc1=u1−u0=72−3=12⇒cn+1=12(14)n⇒un+1−un=12(14)n⇒∑n0un+1−∑n0un=∑n012(14)n⇒un+1−u0=12×1−(14)n+11−14=23[1−(14)n+1]⇒un+1=23[1−(14)n+1]+3=13(11−24n+1)or⇒un=13(11−24n)
Commented by Rio Michael last updated on 29/Dec/19
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com