Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 76630 by Rio Michael last updated on 28/Dec/19

two sequences , (u_n ) and (v_n ), for n∈N is defined as:   { ((u_0  =3)),((u_(n+1) = (1/2)(u_n  + v_n )  )) :}and  { ((v_0 = 4)),((v_(n+1) = (1/2)(u_(n+1)  + v_n ))) :}  a) calculate u_1 ,v_1 ,u_2  and v_2   b) Another sequence (w_n ), is defined by    w_n  = v_n  − u_n  , ∀ n∈N  show that w_n  is a convegent geometric sequence.  c) Express w_n  as a function of n and obtain its limits.  d) Study the sense of variation(monotony)  of (u_n ) and (v_n )  what can you deduce?  e) Consider another sequence t_n  defined by        t_n  = ((u_n  + 2v_n )/3) , ∀ n ∈ N   show that t_n  is a constant sequence  f) hence obtain the limit of the sequences  (u_n ) and (v_n )

twosequences,(un)and(vn),fornNisdefinedas:{u0=3un+1=12(un+vn)and{v0=4vn+1=12(un+1+vn)a)calculateu1,v1,u2andv2b)Anothersequence(wn),isdefinedbywn=vnun,nNshowthatwnisaconvegentgeometricsequence.c)Expresswnasafunctionofnandobtainitslimits.d)Studythesenseofvariation(monotony)of(un)and(vn)whatcanyoudeduce?e)Consideranothersequencetndefinedbytn=un+2vn3,nNshowthattnisaconstantsequencef)henceobtainthelimitofthesequences(un)and(vn)

Answered by mr W last updated on 29/Dec/19

u_(n+1) = (1/2)(u_n  + v_n )   ..(i)  v_(n+1) = (1/2)(u_(n+1)  + v_n )   ...(ii)  (ii)−(i):  v_(n+1) =(3/2)u_(n+1) −(1/2)u_n   ⇒v_n =(3/2)u_n −(1/2)u_(n−1)   put this into (i):  ⇒4u_(n+1) − 5u_n +u_(n−1) =0  4x^2 − 5x+1=0  (4x−1)(x−1)=0  ⇒x=(1/4), x=1  ⇒u_n =(A/4^n )+B  u_0 =3 ⇒3=A+B  u_1 =(1/2)(3+4)=(7/2) ⇒(7/2)=(A/4)+B  ⇒−(1/2)=((3A)/4) ⇒A=−(2/3)  ⇒B=3+(2/3)=((11)/3)  ⇒u_n =(1/3)(11−(2/4^n ))  ⇒v_n =(1/3)(11+(1/4^n ))  ...  (b)  w_n  = v_n  − u_n =(1/3)(11+(1/4^n ))−(1/3)(11−(2/4^n ))  w_n =(1/4^n ) ⇒ G.P. with common ratio (1/4)  ....  (e)  t_n  = ((u_n  + 2v_n )/3)=(((2/3)(11+(1/4^n ))+(1/3)(11−(2/4^n )))/3)  ⇒t_n =((11)/3)=constant

un+1=12(un+vn)..(i)vn+1=12(un+1+vn)...(ii)(ii)(i):vn+1=32un+112unvn=32un12un1putthisinto(i):4un+15un+un1=04x25x+1=0(4x1)(x1)=0x=14,x=1un=A4n+Bu0=33=A+Bu1=12(3+4)=7272=A4+B12=3A4A=23B=3+23=113un=13(1124n)vn=13(11+14n)...(b)wn=vnun=13(11+14n)13(1124n)wn=14nG.P.withcommonratio14....(e)tn=un+2vn3=23(11+14n)+13(1124n)3tn=113=constant

Commented by mr W last updated on 29/Dec/19

alternative:  ⇒4u_(n+1) − 5u_n +u_(n−1) =0  ⇒4u_(n+1) − 4u_n −(u_n −u_(n−1) )=0  ⇒(u_(n+1) − u_n )=(1/4)(u_n −u_(n−1) )  ⇒c_(n+1) =(1/4)c_n   ⇒ G.P.  ⇒c_(n+1) =c_1 ((1/4))^n   c_1 =u_1 −u_0 =(7/2)−3=(1/2)  ⇒c_(n+1) =(1/2)((1/4))^n   ⇒u_(n+1) −u_n =(1/2)((1/4))^n   ⇒Σ_0 ^n u_(n+1) −Σ_0 ^n u_n =Σ_0 ^n (1/2)((1/4))^n   ⇒u_(n+1) −u_0 =(1/2)×((1−((1/4))^(n+1) )/(1−(1/4)))=(2/3)[1−((1/4))^(n+1) ]  ⇒u_(n+1) =(2/3)[1−((1/4))^(n+1) ]+3=(1/3)(11−(2/4^(n+1) ))  or  ⇒u_n =(1/3)(11−(2/4^n ))

alternative:4un+15un+un1=04un+14un(unun1)=0(un+1un)=14(unun1)cn+1=14cnG.P.cn+1=c1(14)nc1=u1u0=723=12cn+1=12(14)nun+1un=12(14)nn0un+1n0un=n012(14)nun+1u0=12×1(14)n+1114=23[1(14)n+1]un+1=23[1(14)n+1]+3=13(1124n+1)orun=13(1124n)

Commented by Rio Michael last updated on 29/Dec/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com