Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 76663 by aliesam last updated on 29/Dec/19

Answered by benjo 1/2 santuyy last updated on 29/Dec/19

2^(3n )  ?

23n?

Answered by mind is power last updated on 29/Dec/19

(1+j)^(3n) =ΣC_(3n) ^k j^k =Σ_(k=0) ^n C_(3n) ^(3k) +jΣ_(k=0) ^(n−1) C_(3n) ^(3k+1) +j^2 Σ_(k=0) ^(n−1) C_(3n) ^(3k+2) ...A  withe j=e^((2iπ)/3)   (1+j^2 )^(3n) =ΣC_(3n) ^k j^(2k) =j^2 Σ_(k=0) ^(n−1) C_(3n) ^(3k+1) +jΣ_(k=0) ^(n−1) C_(3n) ^(3k+2) +Σ_(k=0) ^n C_(3n) ^(3k) ...B  (1+1)^(3n) =Σ_(k=0) ^(3n) C_(3n) ^k =Σ_(k=0) ^n C_(3n) ^(3k) +Σ_(k=0) ^(n−1) C_(3n) ^(3k+1) +Σ_(k=0) ^(n−1) C_(3n) ^(3k+2)   1+j+j^2 =0⇒  A+B⇔(1+j)^(3n) +(1+j^2 )^(3n) =2Σ_(k=0) ^n C_(3n) ^(3k) −ΣC_(3n) ^(3k+1) −ΣC_(3n) ^(3k+2)   A−B⇒(1+j)^(3n) −(1+j^2 )^(3n) =(j−j^2 )ΣC_(3n) ^(3k+1) −(j−j^2 )ΣC_(3n) ^(3k+2)   X=ΣC_(3n) ^(3k) ,Y=ΣC_(3n) ^(3k+1) ,Z=ΣC_(3n) ^(3k+2)   x+y+z=2^(3n)   2x−y−z=(1+j)^(3n) +(1+j^2 )^(3n)   3x= ((2^(3n) +(1+j)^(3n) +(1+j^2 )^(3n) )/)  (1+j)^(3n) =(−j^2 )^(3n) =(−1)^n   (1+j^2 )^(3n) =(−j)^(3n) =(−1)^n   ⇒x=((2^(3n) +2(−1)^n )/3)=Σ_(k=0) ^n C_(3n) ^(3k)

(1+j)3n=ΣC3nkjk=nk=0C3n3k+jn1k=0C3n3k+1+j2n1k=0C3n3k+2...Awithej=e2iπ3(1+j2)3n=ΣC3nkj2k=j2n1k=0C3n3k+1+jn1k=0C3n3k+2+nk=0C3n3k...B(1+1)3n=3nk=0C3nk=nk=0C3n3k+n1k=0C3n3k+1+n1k=0C3n3k+21+j+j2=0A+B(1+j)3n+(1+j2)3n=2nk=0C3n3kΣC3n3k+1ΣC3n3k+2AB(1+j)3n(1+j2)3n=(jj2)ΣC3n3k+1(jj2)ΣC3n3k+2X=ΣC3n3k,Y=ΣC3n3k+1,Z=ΣC3n3k+2x+y+z=23n2xyz=(1+j)3n+(1+j2)3n3x=23n+(1+j)3n+(1+j2)3n(1+j)3n=(j2)3n=(1)n(1+j2)3n=(j)3n=(1)nx=23n+2(1)n3=nk=0C3n3k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com