Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 76780 by mathmax by abdo last updated on 30/Dec/19

find A=∫_(−∞) ^(+∞)  x e^(−x^2 ) arctan(x−(1/x))dx

findA=+xex2arctan(x1x)dx

Commented by mathmax by abdo last updated on 06/Jan/20

by parts u^′ =xe^(−x^2 )  and v=arctan(x−(1/x)) ⇒  A =[−(1/2)e^(−x^2 ) arctan(x−(1/x))]_(−∞) ^(+∞) +(1/2)∫_(−∞) ^(+∞)  e^(−x^2 ) ×((1+(1/x^2 ))/(1+(x−(1/x))^2 ))dx  =(1/2)∫_(−∞) ^(+∞)  (((x^2  +1)e^(−x^2 ) )/(x^2 { 1+(((x^2 −1)^2 )/x^2 )}))dx ⇒2A =∫_(−∞) ^(+∞)  (((x^2  +1)e^(−x^2 ) )/(x^2 {((x^2  +(x^2 −1)^2 )/x^2 )}))dx  =∫_(−∞) ^(+∞)  (((x^2  +1)e^(−x^2 ) )/(x^2 +x^4 −2x^2  +1))dx =∫_(−∞) ^(+∞)  (((x^2  +1)e^(−x^2 ) )/(x^4 −x^2  +1))dx  let W(z) =(((z^2  +1)e^(−x^2 ) )/(z^4 −z^2  +1)) [poles of W?  z^4 −z^2  +1 =0 →t^2 −t+1 =0  (t=z^2 )  Δ=1−4=−3 ⇒t_1 =((1+i(√3))/2) =e^((iπ)/3)  and t_2 =((1−i(√3))/2) =e^(−((iπ)/3))  ⇒  W(z) =(((z^2  +1)e^(−z^2 ) )/((z^2 −e^((iπ)/3) )(z^2 −e^(−((iπ)/3)) ))) =(((z^2  +1)e^(−z^2 ) )/((z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^(−((iπ)/6)) )))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ{ Res(W,e^((iπ)/6) ) +Res(W,−e^(−((iπ)/6)) )}  ...be continued...

bypartsu=xex2andv=arctan(x1x)A=[12ex2arctan(x1x)]++12+ex2×1+1x21+(x1x)2dx=12+(x2+1)ex2x2{1+(x21)2x2}dx2A=+(x2+1)ex2x2{x2+(x21)2x2}dx=+(x2+1)ex2x2+x42x2+1dx=+(x2+1)ex2x4x2+1dxletW(z)=(z2+1)ex2z4z2+1[polesofW?z4z2+1=0t2t+1=0(t=z2)Δ=14=3t1=1+i32=eiπ3andt2=1i32=eiπ3W(z)=(z2+1)ez2(z2eiπ3)(z2eiπ3)=(z2+1)ez2(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)+W(z)dz=2iπ{Res(W,eiπ6)+Res(W,eiπ6)}...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com