Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 76855 by aliesam last updated on 31/Dec/19

Commented by aliesam last updated on 31/Dec/19

AB=BC=......=Fg=GA  prove that   the area=(a^2 /2)(π−7tan((π/(14))))

AB=BC=......=Fg=GAprovethatthearea=a22(π7tan(π14))

Commented by 67549972 last updated on 08/Feb/20

Answered by mr W last updated on 31/Dec/19

Commented by mr W last updated on 31/Dec/19

2θ=((2π)/7)  ⇒θ=(π/7)  R cos (θ/2)=(a/2)  ⇒R=(a/(2 cos (π/(14))))  A_(blue) =((R^2 sin 2θ)/2)=((a^2  sin ((2π)/7))/(8 cos^2  (π/(14))))  A_(green) =(a^2 /2)(θ−sin θ)=(a^2 /2)((π/7)−sin (π/7))    A=7(A_(blue) +A_(green) )  =7[((a^2  sin ((2π)/7))/(8 cos^2  (π/(14))))+(a^2 /2)((π/7)−sin (π/7))]  =(a^2 /2)[π+((7 sin ((2π)/7))/(4 cos^2  (π/(14))))−7 sin (π/7)]  =(a^2 /2)[π+((7 sin (π/7) cos (π/7))/(2 cos^2  (π/(14))))−7 sin (π/7)]  =(a^2 /2)[π+7 sin (π/7)(((cos (π/7))/(2 cos^2  (π/(14))))−1)]  =(a^2 /2)[π+7 sin (π/7)(((cos (π/7)−2 cos^2  (π/(14)))/(2 cos^2  (π/(14)))))]  =(a^2 /2)[π−((7 sin (π/7))/(2 cos^2  (π/(14))))]  =(a^2 /2)[π−((14 sin (π/(14)) cos (π/(14)))/(2 cos^2  (π/(14))))]  =(a^2 /2)[π−((7 sin (π/(14)))/(cos (π/(14))))]  =(a^2 /2)(π−7 tan (π/(14)))

2θ=2π7θ=π7Rcosθ2=a2R=a2cosπ14Ablue=R2sin2θ2=a2sin2π78cos2π14Agreen=a22(θsinθ)=a22(π7sinπ7)A=7(Ablue+Agreen)=7[a2sin2π78cos2π14+a22(π7sinπ7)]=a22[π+7sin2π74cos2π147sinπ7]=a22[π+7sinπ7cosπ72cos2π147sinπ7]=a22[π+7sinπ7(cosπ72cos2π141)]=a22[π+7sinπ7(cosπ72cos2π142cos2π14)]=a22[π7sinπ72cos2π14]=a22[π14sinπ14cosπ142cos2π14]=a22[π7sinπ14cosπ14]=a22(π7tanπ14)

Commented by jagoll last updated on 31/Dec/19

waw....fantastic sir

waw....fantasticsir

Commented by aliesam last updated on 31/Dec/19

briliant solution sir . thank you

briliantsolutionsir.thankyou

Commented by Tawa11 last updated on 29/Dec/21

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com