All Questions Topic List
Mensuration Questions
Previous in All Question Next in All Question
Previous in Mensuration Next in Mensuration
Question Number 76964 by peter frank last updated on 01/Jan/20
solveDifferentialequationx2d2ydx2−4xdydx+3y=x3+2x+5
Answered by mind is power last updated on 02/Jan/20
x2d2ydx2−4xdydx+3y=0..EtheorieoflinearalgebraappliedinequationweknowthatsolutionoflinearDiffertionslequationformevectorielsubspaceofdim2lety=xm⇒((m(m−1)−4m+3)=0⇒m2−5m+3=0m1=5−132,m2=5+132y1=x5−132,y2=x5+132areindependente⇒(y1,y2)BasesofsolutionsofEGeneralsolutionofEis,∀y∈E∃!(a,b)∈R2∣y=ax5−132+bx5+132particularesolutionP(x)=ax3+bx2+cx+d⇒(6a−12a+3a)=1(2b−8b+3b)=0(−4c+3c)=23d=5a=−13b=0c=−2d=53p(x)=−x33−2x+53Y=ax5−132+bx5+132−x3−6x+53,(a,b)∈R2
Commented by peter frank last updated on 03/Jan/20
thankyou
wherethis6a−12a+3acamefrpm
Terms of Service
Privacy Policy
Contact: info@tinkutara.com