Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 77027 by mathocean1 last updated on 02/Jan/20

Please help me to solve it in [−π;0]  cos2x+cosx+1=sin3x+sin2x+sinx  Explain details if possible.

Pleasehelpmetosolveitin[π;0]cos2x+cosx+1=sin3x+sin2x+sinxExplaindetailsifpossible.

Answered by mr W last updated on 02/Jan/20

cos2x+cosx+1=sin3x+sin2x+sinx  2 cos^2  x+cosx=3 sin x−4 sin^3  x+2 sin x cos x+sinx  (2 cos x+1)cosx=2 sin x cos x (2cos x+1)  (2 cos x+1)(2 sin x−1)cosx=0  ⇒cos x=0 ⇒x=−(π/2)  ⇒cos x=−(1/2) ⇒x=−((2π)/3)  ⇒sin x=(1/2) ⇒no solution within [−π,0]  ⇒solutions are: x=−((2π)/3), −(π/2)

cos2x+cosx+1=sin3x+sin2x+sinx2cos2x+cosx=3sinx4sin3x+2sinxcosx+sinx(2cosx+1)cosx=2sinxcosx(2cosx+1)(2cosx+1)(2sinx1)cosx=0cosx=0x=π2cosx=12x=2π3sinx=12nosolutionwithin[π,0]solutionsare:x=2π3,π2

Commented by mathocean1 last updated on 02/Jan/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com