Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77035 by necxxx last updated on 02/Jan/20

Solve for x in:  (i) (2(x+3)−3(x−2))(2x−1)≥0  (ii)(x−1)(2x+3)(x+1)(x+3)≤1

$${Solve}\:{for}\:{x}\:{in}: \\ $$$$\left({i}\right)\:\left(\mathrm{2}\left({x}+\mathrm{3}\right)−\mathrm{3}\left({x}−\mathrm{2}\right)\right)\left(\mathrm{2}{x}−\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\left({ii}\right)\left({x}−\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)\leqslant\mathrm{1} \\ $$

Answered by MJS last updated on 03/Jan/20

(i)  −2x^2 +25x−12≥0  −2(x−12)(x−(1/2))≥0  (x−12)(x−(1/2))≤0 ⇒ (1/2)≤x≤12  (ii)  2x^4 +9x^3 +7x^2 +9x−10≤0  zeros at x≈−3.03943∧x≈1.02431  ⇒ ≈−3.03943≤x≤≈1.02431

$$\left({i}\right) \\ $$$$−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{25}{x}−\mathrm{12}\geqslant\mathrm{0} \\ $$$$−\mathrm{2}\left({x}−\mathrm{12}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\geqslant\mathrm{0} \\ $$$$\left({x}−\mathrm{12}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\leqslant\mathrm{0}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}\leqslant\mathrm{12} \\ $$$$\left({ii}\right) \\ $$$$\mathrm{2}{x}^{\mathrm{4}} +\mathrm{9}{x}^{\mathrm{3}} +\mathrm{7}{x}^{\mathrm{2}} +\mathrm{9}{x}−\mathrm{10}\leqslant\mathrm{0} \\ $$$$\mathrm{zeros}\:\mathrm{at}\:{x}\approx−\mathrm{3}.\mathrm{03943}\wedge{x}\approx\mathrm{1}.\mathrm{02431} \\ $$$$\Rightarrow\:\approx−\mathrm{3}.\mathrm{03943}\leqslant{x}\leqslant\approx\mathrm{1}.\mathrm{02431} \\ $$

Commented by necxxx last updated on 03/Jan/20

Thank you so much MJS .However one  of the major places I had issue in was  in solving question (ii). Is there a way to   solve such quartic equations? Please help  me out with that. Thank you so much sir.

$${Thank}\:{you}\:{so}\:{much}\:{MJS}\:.{However}\:{one} \\ $$$${of}\:{the}\:{major}\:{places}\:{I}\:{had}\:{issue}\:{in}\:{was} \\ $$$${in}\:{solving}\:{question}\:\left({ii}\right).\:{Is}\:{there}\:{a}\:{way}\:{to}\: \\ $$$${solve}\:{such}\:{quartic}\:{equations}?\:{Please}\:{help} \\ $$$${me}\:{out}\:{with}\:{that}.\:{Thank}\:{you}\:{so}\:{much}\:{sir}. \\ $$

Commented by MJS last updated on 03/Jan/20

in fact we can only try to find exact solutions  (1) (x−a)(x−b)(x−c)(x−d)=x^4 +...+abcd         ⇒ try all factors of ±the constant  (2) try to find 2 square factors         x^4 +ax^3 +bx^2 +cx+d=0; first let x=z−(a/4)         leading to z^4 +pz^2 +qz+r=0         now try to find (z^2 −αz−β)(z^2 +αz−γ)=0         by solving the system for α, β, γ          { ((p=−(α^2 +β+γ))),((q=α(γ−β))),((r=βγ)) :}         starting with (i) γ=... and (ii) β=... this         leads to (iii) a polynome of degree 3 for (α^2 )         which sometimes leads to a “nice” solution         if not, this doesn′t help  (3) some pokynomes of degree 4 can be solved         using one of the following “models”. you         have to expand and match the constants         which leads to systems of 4 equations for         α, β, γ, δ. again leading to polynomes of         degree 3 for (α^2 ) or (γ^2 ) which might have         “nice” solutions         (x−α−(√β))(x−α+(√β))(x−γ−(√δ))(x−γ+(√δ))=0         (x−α−(√β)−(√γ)−(√δ))(x−α−(√β)+(√γ)+(√δ))(x−α+(√β)−(√γ)+(√δ))(x−α+(√β)+(√γ)−(√δ))=0         (x+α+(√β)+(√γ)+(√δ))(x+α+(√β)−(√γ)−(√δ))(x+α−(√β)+(√γ)−(√δ))(x+α−(√β)+>−(√γ)+(√δ))=0  if all these don′t work you can only approximate  because Ferrari′s solution is always possible  to find but never possible to handle

$$\mathrm{in}\:\mathrm{fact}\:\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{exact}\:\mathrm{solutions} \\ $$$$\left(\mathrm{1}\right)\:\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)\left({x}−{d}\right)={x}^{\mathrm{4}} +...+{abcd} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\mathrm{try}\:\mathrm{all}\:\mathrm{factors}\:\mathrm{of}\:\pm\mathrm{the}\:\mathrm{constant} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{2}\:\mathrm{square}\:\mathrm{factors} \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0};\:\mathrm{first}\:\mathrm{let}\:{x}={z}−\frac{{a}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\mathrm{leading}\:\mathrm{to}\:{z}^{\mathrm{4}} +{pz}^{\mathrm{2}} +{qz}+{r}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{now}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\left({z}^{\mathrm{2}} −\alpha{z}−\beta\right)\left({z}^{\mathrm{2}} +\alpha{z}−\gamma\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{by}\:\mathrm{solving}\:\mathrm{the}\:\mathrm{system}\:\mathrm{for}\:\alpha,\:\beta,\:\gamma \\ $$$$\:\:\:\:\:\:\:\begin{cases}{{p}=−\left(\alpha^{\mathrm{2}} +\beta+\gamma\right)}\\{{q}=\alpha\left(\gamma−\beta\right)}\\{{r}=\beta\gamma}\end{cases} \\ $$$$\:\:\:\:\:\:\:\mathrm{starting}\:\mathrm{with}\:\left(\mathrm{i}\right)\:\gamma=...\:\mathrm{and}\:\left(\mathrm{ii}\right)\:\beta=...\:\mathrm{this} \\ $$$$\:\:\:\:\:\:\:\mathrm{leads}\:\mathrm{to}\:\left(\mathrm{iii}\right)\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{3}\:\mathrm{for}\:\left(\alpha^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\mathrm{which}\:\mathrm{sometimes}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:``\mathrm{nice}''\:\mathrm{solution} \\ $$$$\:\:\:\:\:\:\:\mathrm{if}\:\mathrm{not},\:\mathrm{this}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{help} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{some}\:\mathrm{pokynomes}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{4}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved} \\ $$$$\:\:\:\:\:\:\:\mathrm{using}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:``\mathrm{models}''.\:\mathrm{you} \\ $$$$\:\:\:\:\:\:\:\mathrm{have}\:\mathrm{to}\:\mathrm{expand}\:\mathrm{and}\:\mathrm{match}\:\mathrm{the}\:\mathrm{constants} \\ $$$$\:\:\:\:\:\:\:\mathrm{which}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{systems}\:\mathrm{of}\:\mathrm{4}\:\mathrm{equations}\:\mathrm{for} \\ $$$$\:\:\:\:\:\:\:\alpha,\:\beta,\:\gamma,\:\delta.\:\mathrm{again}\:\mathrm{leading}\:\mathrm{to}\:\mathrm{polynomes}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\mathrm{degree}\:\mathrm{3}\:\mathrm{for}\:\left(\alpha^{\mathrm{2}} \right)\:\mathrm{or}\:\left(\gamma^{\mathrm{2}} \right)\:\mathrm{which}\:\mathrm{might}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:``\mathrm{nice}''\:\mathrm{solutions} \\ $$$$\:\:\:\:\:\:\:\left({x}−\alpha−\sqrt{\beta}\right)\left({x}−\alpha+\sqrt{\beta}\right)\left({x}−\gamma−\sqrt{\delta}\right)\left({x}−\gamma+\sqrt{\delta}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left({x}−\alpha−\sqrt{\beta}−\sqrt{\gamma}−\sqrt{\delta}\right)\left({x}−\alpha−\sqrt{\beta}+\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}−\alpha+\sqrt{\beta}−\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}−\alpha+\sqrt{\beta}+\sqrt{\gamma}−\sqrt{\delta}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left({x}+\alpha+\sqrt{\beta}+\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}+\alpha+\sqrt{\beta}−\sqrt{\gamma}−\sqrt{\delta}\right)\left({x}+\alpha−\sqrt{\beta}+\sqrt{\gamma}−\sqrt{\delta}\right)\left({x}+\alpha−\sqrt{\beta}+>−\sqrt{\gamma}+\sqrt{\delta}\right)=\mathrm{0} \\ $$$$\mathrm{if}\:\mathrm{all}\:\mathrm{these}\:\mathrm{don}'\mathrm{t}\:\mathrm{work}\:\mathrm{you}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$$\mathrm{because}\:\mathrm{Ferrari}'\mathrm{s}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{always}\:\mathrm{possible} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{but}\:\mathrm{never}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{handle} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com