Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77086 by Dah Solu Tion last updated on 03/Jan/20

∫_0 ^1 xtan^(−1) xdx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {xtan}^{−\mathrm{1}} {xdx} \\ $$$$ \\ $$

Commented by Tony Lin last updated on 03/Jan/20

∫xtan^(−1) xdx  (∫f ′g=fg−∫fg′)  =(x^2 /2)tan^(−1) x−(1/2)∫(x^2 /(x^2 +1))dx  =(x^2 /2)tan^(−1) x−(1/2)x+(1/2)tan^(−1) x+c  =(((x^2 +1)tan^(−1) x−x)/2)+c  ∫_0 ^1 xtan^(−1) xdx  =((2×(π/4)−1)/2)  =((π−2)/4)

$$\int{xtan}^{−\mathrm{1}} {xdx}\:\:\left(\int{f}\:'{g}={fg}−\int{fg}'\right) \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{tan}^{−\mathrm{1}} {x}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{tan}^{−\mathrm{1}} {x}−\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} {x}+{c} \\ $$$$=\frac{\left({x}^{\mathrm{2}} +\mathrm{1}\right){tan}^{−\mathrm{1}} {x}−{x}}{\mathrm{2}}+{c} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {xtan}^{−\mathrm{1}} {xdx} \\ $$$$=\frac{\mathrm{2}×\frac{\pi}{\mathrm{4}}−\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\pi−\mathrm{2}}{\mathrm{4}} \\ $$

Commented by turbo msup by abdo last updated on 03/Jan/20

let A =∫_0 ^1  xarctanxdx by parts  A =[(x^2 /2) arctanx]_0 ^1 −∫_0 ^1 (x^2 /2)(dx/(1+x^2 ))  =(1/2)×(π/4)−(1/2) ∫_0 ^1  ((x^2 +1−1)/(x^2  +1))dx  =(π/8)−(1/2)+(1/2)[arctanx]_0 ^1   =(π/8)−(1/2)+ (π/8) =(π/4)−(1/2)

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{xarctanxdx}\:{by}\:{parts} \\ $$$${A}\:=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{2}}\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$$$=\frac{\pi}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\left[{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\pi}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}+\:\frac{\pi}{\mathrm{8}}\:=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by john santu last updated on 03/Jan/20

using integration by part   u = tan^(−1) (x) ⇒du = (1/(x^2 +1)) dx  dv = x dx ⇒ v = (1/2)x^2   I = u.v − ∫ v du   = (1/2)x^2 tan^(−1) (x)−∫ (1/2)((x^2 /(x^2 +1)))dx  = (1/2)x^2 tan^(−1) (x) −(1/2)(∫1−sec^2 t)dt , (x=tan t)  = (1/2)x^2 tan^(−1) (x)−(1/2)tan^(−1) (x)+x ★  now please substuti x = 1 and x = 0. ★

$${using}\:{integration}\:{by}\:{part}\: \\ $$$${u}\:=\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:\Rightarrow{du}\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$${dv}\:=\:{x}\:{dx}\:\Rightarrow\:{v}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \\ $$$${I}\:=\:{u}.{v}\:−\:\int\:{v}\:{du}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left({x}\right)−\int\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\right){dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\int\mathrm{1}−\mathrm{sec}\:^{\mathrm{2}} {t}\right){dt}\:,\:\left({x}=\mathrm{tan}\:{t}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)+{x}\:\bigstar \\ $$$${now}\:{please}\:{substuti}\:{x}\:=\:\mathrm{1}\:{and}\:{x}\:=\:\mathrm{0}.\:\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com