Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 77160 by Chi Mes Try last updated on 03/Jan/20

Commented by Chi Mes Try last updated on 03/Jan/20

please help out

pleasehelpout

Answered by mind is power last updated on 05/Jan/20

∫_0 ^π ((xsin(x))/(1+cos^2 (x)))=∫_0 ^π (((π−x)sin(x))/(1+cos^2 (x)))dx  ⇒2∫((xsin(x))/(1+cos^2 (x)))dx=π∫_0 ^π ((sin(x))/(1+cos^2 (x)))dx=[−πarctan(cos(x))]_0 ^π   =(π^2 /2)⇒∫_0 ^π ((xsin(x))/(1+cos^2 (x)))dx=(π^2 /4)  (k((1/(√2))))^2 =(∫_0 ^(π/2) (((√2)dx)/(√(2−sin^2 (x)))))^2 =2(∫_0 ^(π/2) (dx/(√(2−sin^2 (x)))))^2   Γ((1/4)).Γ(1−(1/4))=(π/(sin((π/4))))=π(√2)  ((Γ(x).Γ(y))/(Γ(x+y)))=∫_0 ^1 t^(x−1) (1−t)^(y−1) dt  2x=y=(1/2)⇒  ((Γ((1/4)).Γ((1/2)))/(Γ((3/4))))=∫_0 ^1 t^((−3)/4) .(1−t)^(−(1/2)) dt  t=u^4 ⇒du=(1/4)t^(−(3/4)) dt  ⇒((Γ((1/4)).(√π))/(Γ((3/4))))=4∫_0 ^1 (1−u^4 )^(−(1/4)) du  Γ((1/4)).Γ((3/4))=π(√2)  ⇒((Γ^2 ((1/4)))/(√(2π)))=4∫_0 ^1 (dx/(√(1−x^4 )))  k((1/(√2)))^2 =2(∫_0 ^(π/2) (dx/(√(2−sin^2 (x)))))^2   =2(∫_0 ^(π/2) (dx/(√(1+cos^2 (x)))))^2   =2(∫_0 ^1 (dx/(√(1−x^4 ))))^2 =k((1/(√2)))^2 ⇒((Γ^2 ((1/4)))/(4(√(2π))))=∫_0 ^1 (dx/(√(1−x^4 )))  ⇒2(∫_0 ^1 ((dx/(√(1−x^4 )))))^2 =k^2 ((1/(√2)))=((Γ^4 ((1/4)))/(16π))=((Γ^4 ((1/4)))/(4π))  ((k^2 ((1/(√2))))/(∫_0 ^π ((xsin(x))/(1+cos^2 (x)))dx))=((Γ^4 ((1/4)))/((16π)/(π^2 /4)))=((Γ^4 ((1/4)))/(4π^3 ))

0πxsin(x)1+cos2(x)=0π(πx)sin(x)1+cos2(x)dx2xsin(x)1+cos2(x)dx=π0πsin(x)1+cos2(x)dx=[πarctan(cos(x))]0π=π220πxsin(x)1+cos2(x)dx=π24(k(12))2=(0π22dx2sin2(x))2=2(0π2dx2sin2(x))2Γ(14).Γ(114)=πsin(π4)=π2Γ(x).Γ(y)Γ(x+y)=01tx1(1t)y1dt2x=y=12Γ(14).Γ(12)Γ(34)=01t34.(1t)12dtt=u4du=14t34dtΓ(14).πΓ(34)=401(1u4)14duΓ(14).Γ(34)=π2Γ2(14)2π=401dx1x4k(12)2=2(0π2dx2sin2(x))2=2(0π2dx1+cos2(x))2=2(01dx1x4)2=k(12)2Γ2(14)42π=01dx1x42(01(dx1x4))2=k2(12)=Γ4(14)16π=Γ4(14)4πk2(12)0πxsin(x)1+cos2(x)dx=Γ4(14)16ππ24=Γ4(14)4π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com