All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 77160 by Chi Mes Try last updated on 03/Jan/20
Commented by Chi Mes Try last updated on 03/Jan/20
pleasehelpout
Answered by mind is power last updated on 05/Jan/20
∫0πxsin(x)1+cos2(x)=∫0π(π−x)sin(x)1+cos2(x)dx⇒2∫xsin(x)1+cos2(x)dx=π∫0πsin(x)1+cos2(x)dx=[−πarctan(cos(x))]0π=π22⇒∫0πxsin(x)1+cos2(x)dx=π24(k(12))2=(∫0π22dx2−sin2(x))2=2(∫0π2dx2−sin2(x))2Γ(14).Γ(1−14)=πsin(π4)=π2Γ(x).Γ(y)Γ(x+y)=∫01tx−1(1−t)y−1dt2x=y=12⇒Γ(14).Γ(12)Γ(34)=∫01t−34.(1−t)−12dtt=u4⇒du=14t−34dt⇒Γ(14).πΓ(34)=4∫01(1−u4)−14duΓ(14).Γ(34)=π2⇒Γ2(14)2π=4∫01dx1−x4k(12)2=2(∫0π2dx2−sin2(x))2=2(∫0π2dx1+cos2(x))2=2(∫01dx1−x4)2=k(12)2⇒Γ2(14)42π=∫01dx1−x4⇒2(∫01(dx1−x4))2=k2(12)=Γ4(14)16π=Γ4(14)4πk2(12)∫0πxsin(x)1+cos2(x)dx=Γ4(14)16ππ24=Γ4(14)4π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com