Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77412 by BK last updated on 06/Jan/20

Commented by Tony Lin last updated on 06/Jan/20

ζ(s)=(1/1^s )+(1/2^s )+(1/3^s )+∙∙∙+(1/n^s )  ζ(2)=(1/1^2 )+(1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )=(π^2 /6)  (1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )=(π^2 /6)−1

ζ(s)=11s+12s+13s++1nsζ(2)=112+122+132++1n2=π26122+132++1n2=π261

Commented by mr W last updated on 06/Jan/20

ζ(s)=(1/1^s )+(1/2^s )+(1/3^s )+∙∙∙+(1/n^s )+......  ζ(s)≠(1/1^s )+(1/2^s )+(1/3^s )+∙∙∙+(1/n^s )  (1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )+.....=(π^2 /6)−1  (1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )≠(π^2 /6)−1

ζ(s)=11s+12s+13s++1ns+......ζ(s)11s+12s+13s++1ns122+132++1n2+.....=π261122+132++1n2π261

Commented by BK last updated on 06/Jan/20

thanks

thanks

Commented by Tony Lin last updated on 06/Jan/20

sorry I got it

sorryIgotit

Commented by BK last updated on 06/Jan/20

(π^2 /6)−  prove that sir plz

π26provethatsirplz

Commented by mathmax by abdo last updated on 06/Jan/20

not correct  ξ(s) =Σ_(n=1) ^∞  (1/n^s )  (its a infinite sum)  and (1/1^s ) +(1/2^s )+....+(1/n^s ) ≠ξ(s)

notcorrectξ(s)=n=11ns(itsainfinitesum)and11s+12s+....+1nsξ(s)

Commented by mathmax by abdo last updated on 07/Jan/20

S=Σ_(k=1) ^n  (1/k^2 )−1 =Σ_(k=1) ^∞  (1/k^2 )−1−Σ_(k=n+1) ^∞  (1/k^2 )  =(π^2 /6)−1−Σ_(k=n+1) ^∞  (1/k^2 )

S=k=1n1k21=k=11k21k=n+11k2=π261k=n+11k2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com