Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 77464 by naka3546 last updated on 06/Jan/20

∫_(  0)   ^(π/2) ln (2 cos x) dx  =  ?

0π2ln(2cosx)dx=?

Commented by kaivan.ahmadi last updated on 06/Jan/20

u=ln(2cosx)⇒du=−tgxdx  dv=dx⇒v=x  uv−∫vdu=xln(2cosx)+∫xtgxdx  now for ∫xtgxdx  u=tgx⇒du=(1+tg^2 x)dx  dv=xdx⇒v=(x^2 /2)  uv−∫vdu=(x^2 /2)tgx−(1/2)∫x^2 (1+tg^2 x)dx=  (x^2 /2)tgx−(1/2)∫(x^2 +x^2 tg^2 x)dx  so

u=ln(2cosx)du=tgxdxdv=dxv=xuvvdu=xln(2cosx)+xtgxdxnowforxtgxdxu=tgxdu=(1+tg2x)dxdv=xdxv=x22uvvdu=x22tgx12x2(1+tg2x)dx=x22tgx12(x2+x2tg2x)dxso

Commented by MJS last updated on 06/Jan/20

sorry but this is wrong  I don′t think it′s possible to solve this using  elementary calculus

sorrybutthisiswrongIdontthinkitspossibletosolvethisusingelementarycalculus

Commented by kaivan.ahmadi last updated on 06/Jan/20

if F(x)=xln(2cosx)+(1/2)(x^2 tgx−x+tg^(−1) x)  then  F ′(x)=ln(2cosx)  so ∫ln(2cosx)dx=F(x)+C

ifF(x)=xln(2cosx)+12(x2tgxx+tg1x)thenF(x)=ln(2cosx)soln(2cosx)dx=F(x)+C

Commented by MJS last updated on 06/Jan/20

but  (d/dx)[xln (2cos x) +(1/2)(x^2 tan x −x+tan x)]=  =ln (2cos x) +(1/2)(tan^2  x +(x^2 /(cos^2  x)))

butddx[xln(2cosx)+12(x2tanxx+tanx)]==ln(2cosx)+12(tan2x+x2cos2x)

Commented by mathmax by abdo last updated on 06/Jan/20

∫_0 ^(π/2) ln(2cosx)dx =(π/2)ln(2)+∫_0 ^(π/2) ln(cosx)dx we have proved that  ∫_0 ^(π/2) ln(cosx)dx =−(π/2)ln(2) ⇒∫_0 ^(π/2) ln(2cosx)dx =0

0π2ln(2cosx)dx=π2ln(2)+0π2ln(cosx)dxwehaveprovedthat0π2ln(cosx)dx=π2ln(2)0π2ln(2cosx)dx=0

Commented by mathmax by abdo last updated on 06/Jan/20

let f(a)=∫_0 ^(π/2) ln(acosx)dx with a>0 we have  f^′ (a) =∫_0 ^(π/2) ((cosx)/(acosx))dx =(π/(2a)) ⇒f(a) =(π/2)ln(a)+c  f(1)=∫_0 ^(π/2) ln(cosx)dx =−(π/2)ln(2)=c ⇒  ∫_0 ^(π/2) ln(acosx)dx =(π/2)ln(a)−(π/2)ln(2) ⇒  ∫_0 ^(π/2) ln(2cosx)dx =0

letf(a)=0π2ln(acosx)dxwitha>0wehavef(a)=0π2cosxacosxdx=π2af(a)=π2ln(a)+cf(1)=0π2ln(cosx)dx=π2ln(2)=c0π2ln(acosx)dx=π2ln(a)π2ln(2)0π2ln(2cosx)dx=0

Commented by kaivan.ahmadi last updated on 06/Jan/20

yes sir you are right.i find mistake.it has  ∫x^2 tg^2 xdx  can we solve it?

yessiryouareright.ifindmistake.ithasx2tg2xdxcanwesolveit?

Answered by MJS last updated on 06/Jan/20

∫ln (2cos x) dx=       [t=−ix → dx=i dt]  =−i∫tdt+i∫ln (e^(2t) +1) dt  ∫ln (e^(2t) +1) dt=       [u=−e^(2t)  → dt=−(dx/(2e^(2x) ))]  =(1/2)∫((ln (1−u))/u)du=−(1/2)∫−((ln (1−u))/u)du=  =−(1/2)Li_2  u  Li_2  x is the dilogarithm with Li_2  x =Σ_(n=1) ^∞ (x^n /n^2 )

ln(2cosx)dx=[t=ixdx=idt]=itdt+iln(e2t+1)dtln(e2t+1)dt=[u=e2tdt=dx2e2x]=12ln(1u)udu=12ln(1u)udu==12Li2uLi2xisthedilogarithmwithLi2x=n=1xnn2

Answered by Kunal12588 last updated on 07/Jan/20

I=∫_0 ^( π/2) log(2 cos x) dx         .....(1)  ⇒I=∫_0 ^( π/2) log(2 cos ((π/2)−x))dx  ⇒I=∫_0 ^( π/2) log(2 sin x) dx  .....(2)  adding (1) and (2)  2I=∫_0 ^( π/2) log(2 sin 2x) dx   let  2x = t    ⇒ { ((x→0 ⇒ t→0)),((x→ (π/2) ⇒ t→π)) :}   ⇒dx=(1/2)dt  ∴ 2I=(1/2)∫_0 ^( π) log(2 sin t) dt = (1/2)∫_0 ^( π) log(2 sin x)dx  ⇒2I=(1/2)×2∫_0 ^( π/2) log(2 sin x)dx  ⇒2I=∫_0 ^( π/2) log(2 sin ((π/2)−x))dx  ⇒2I=∫_0 ^( π/2) log(2 cos x)dx  ⇒2I=I  ⇒I=0  ∴ ∫_0 ^( π/2) log(2 cos x)dx = 0

I=0π/2log(2cosx)dx.....(1)I=0π/2log(2cos(π2x))dxI=0π/2log(2sinx)dx.....(2)adding(1)and(2)2I=0π/2log(2sin2x)dxlet2x=t{x0t0xπ2tπdx=12dt2I=120πlog(2sint)dt=120πlog(2sinx)dx2I=12×20π/2log(2sinx)dx2I=0π/2log(2sin(π2x))dx2I=0π/2log(2cosx)dx2I=II=00π/2log(2cosx)dx=0

Answered by Kunal12588 last updated on 07/Jan/20

I=∫_0 ^( π/2) log(a cos x)dx  ⇒I=∫_0 ^( π/2) log(a sin x)dx  ⇒2I=∫_0 ^( π/2) log(a^2  sin x cos x)dx  ⇒2I=∫_0 ^( π/2) log((a^2 /2) sin 2x)dx  ⇒2I=log((a^2 /2))∫_0 ^( π/2) dx+∫_0 ^( π/2) log(sin 2x) dx  ⇒2I=(π/2)log((a^2 /2))+(1/2)∫_0 ^( π)  log(sin x) dx  ⇒2I=(π/2)log((a^2 /2))+(1/2)×2∫_0 ^( π/2)  log(sin x) dx  ⇒2I=(π/2)log((a^2 /2))+∫_0 ^( π/2)  log(cos x) dx  ⇒2I=(π/2)log((a^2 /2))−(π/2)log(2)  ⇒I=(π/4)log((a^2 /2))−(π/4)log(2)  ⇒I=(π/4)log((a^2 /4))=(π/2)log((a/2))  f(a)=∫_0 ^( π/2) log(a cos x) dx=(π/2)log((a/2))  f(1)=(π/2)log((1/2))=−(π/2)log(2)  f(2)=(π/2)log(1)=0  f(3)=(π/2)log((3/2))  f(4)=(π/2)log(2)  ⋮

I=0π/2log(acosx)dxI=0π/2log(asinx)dx2I=0π/2log(a2sinxcosx)dx2I=0π/2log(a22sin2x)dx2I=log(a22)0π/2dx+0π/2log(sin2x)dx2I=π2log(a22)+120πlog(sinx)dx2I=π2log(a22)+12×20π/2log(sinx)dx2I=π2log(a22)+0π/2log(cosx)dx2I=π2log(a22)π2log(2)I=π4log(a22)π4log(2)I=π4log(a24)=π2log(a2)f(a)=0π/2log(acosx)dx=π2log(a2)f(1)=π2log(12)=π2log(2)f(2)=π2log(1)=0f(3)=π2log(32)f(4)=π2log(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com