Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 77504 by Maclaurin Stickker last updated on 07/Jan/20

Answered by mr W last updated on 07/Jan/20

say the radius of large outer circle=R

saytheradiusoflargeoutercircle=R

Commented by mr W last updated on 07/Jan/20

Commented by mr W last updated on 07/Jan/20

(a/(R−a))=sin 30°=(1/2)  ⇒a=(R/3)  (x/(R−2a−x))=sin 30°=(1/2)  3x=R−2a=R−((2R)/3)=(R/3)  ⇒x=(R/9)

aRa=sin30°=12a=R3xR2ax=sin30°=123x=R2a=R2R3=R3x=R9

Commented by mr W last updated on 07/Jan/20

Commented by mr W last updated on 07/Jan/20

OT=R cos 30°=(((√3)R)/2)  2b=R−(((√3)R)/2)=(((2−(√3))R)/2)  ⇒b=(((2−(√3))R)/4)  cos β=((OP^2 +OQ^2 −PQ^2 )/(2×OP×OQ))=(((R−r)^2 +(R−b)^2 −(r+b)^2 )/(2(R−r)(R−b)))  cos β=((R^2 −(R+b)r−Rb)/((R−r)(R−b)))  cos β=((R−(15−8(√3))r)/((R−r)))  ST^2 =(b+r)^2 −(b−r)^2 =4br  ⇒ST=2(√(br))=(√((2−(√3))Rr))  ST=PS tan β+OT tan β=(r+(((√3)R)/2))tan β  ST=(r+(((√3)R)/2))((√((R−r)^2 −[R−(15−8(√3))r]^2 ))/(R−(15−8(√3))r))  ST=((√3)R+2r)(2−(√3))((√([R−4(2−(√3))r]r))/(R−(15−8(√3))r))  (√((2−(√3))Rr))=((√3)R+2r)(2−(√3))((√([R−4(2−(√3))r]r))/(R−(15−8(√3))r))  (√((2+(√3))R))=((√3)R+2r)((√(R−4(2−(√3))r))/(R−(15−8(√3))r))  ((1−(15−8(√3))(r/R))/((√3)+2(r/R)))=(√((2−(√3))[1−4(2−(√3))(r/R)]))  ⇒((1−(15−8(√3))λ)/((√3)+2λ))=(√((2−(√3))[1−4(2−(√3))λ]))  ⇒λ=(1/(16))  ⇒r=(R/(16))  ⇒(x/r)=((R/9)/(R/(16)))=((16)/9)

OT=Rcos30°=3R22b=R3R2=(23)R2b=(23)R4cosβ=OP2+OQ2PQ22×OP×OQ=(Rr)2+(Rb)2(r+b)22(Rr)(Rb)cosβ=R2(R+b)rRb(Rr)(Rb)cosβ=R(1583)r(Rr)ST2=(b+r)2(br)2=4brST=2br=(23)RrST=PStanβ+OTtanβ=(r+3R2)tanβST=(r+3R2)(Rr)2[R(1583)r]2R(1583)rST=(3R+2r)(23)[R4(23)r]rR(1583)r(23)Rr=(3R+2r)(23)[R4(23)r]rR(1583)r(2+3)R=(3R+2r)R4(23)rR(1583)r1(1583)rR3+2rR=(23)[14(23)rR]1(1583)λ3+2λ=(23)[14(23)λ]λ=116r=R16xr=R9R16=169

Commented by Maclaurin Stickker last updated on 07/Jan/20

Amazing

Amazing

Commented by TawaTawa last updated on 07/Jan/20

God bless you sir. Thanks for your time.

Godblessyousir.Thanksforyourtime.

Commented by mr W last updated on 08/Jan/20

alternative:  ST=(√((2−(√3))Rr))=OP×sin β  (2−(√3))Rr=OP^2 ×(1−cos^2  β)  (2−(√3))Rr=(R−r)^2 (1−[((R−(15−8(√3))r)/((R−r)))]^2 )  (2−(√3))Rr=(R−r)^2 −[R−(15−8(√3))r]^2   (2−(√3))Rr=4[R−4(2−(√3))r](2−(√3))^2 r  R=4[R−4(2−(√3))r](2−(√3))  ⇒r=(R/(4(2−(√3))))[1−(1/(4(2−(√3))))]  ⇒r=(R/(16))[((7−4(√3))/((2−(√3))^2 ))]  ⇒r=(R/(16))[(((2−(√3))^2 )/((2−(√3))^2 ))]  ⇒r=(R/(16))

alternative:ST=(23)Rr=OP×sinβ(23)Rr=OP2×(1cos2β)(23)Rr=(Rr)2(1[R(1583)r(Rr)]2)(23)Rr=(Rr)2[R(1583)r]2(23)Rr=4[R4(23)r](23)2rR=4[R4(23)r](23)r=R4(23)[114(23)]r=R16[743(23)2]r=R16[(23)2(23)2]r=R16

Commented by TawaTawa last updated on 08/Jan/20

Wow, great sir. God bless you sir.

Wow,greatsir.Godblessyousir.

Commented by Tawa11 last updated on 29/Dec/21

This too. Hahaha

Thistoo.Hahaha

Terms of Service

Privacy Policy

Contact: info@tinkutara.com