Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 77537 by john santu last updated on 07/Jan/20

what is the solution   xy′+(1+xcot x)y=x ?

whatisthesolutionxy+(1+xcotx)y=x?

Answered by mr W last updated on 07/Jan/20

y′+((1/x)+((cos x)/(sin x)))y=1  type y′+p(x)y=q(x)  ∫p(x)dx=∫((1/x)+((cos x)/(sin x)))dx=ln (x)+ln (sin x)=ln (x sin x)  u(x)=e^(∫p(x)dx) =e^(ln (x sin x)) =x sin x  ∫q(x)u(x)dx=∫x sin x dx=∫x d(−cos x)=−x cos x+∫cos x dx=−x cos x+sin x  y=((∫q(x)u(x)dx+C)/(u(x)))=((sin x−x cos x +C)/(x sin x))

y+(1x+cosxsinx)y=1typey+p(x)y=q(x)p(x)dx=(1x+cosxsinx)dx=ln(x)+ln(sinx)=ln(xsinx)u(x)=ep(x)dx=eln(xsinx)=xsinxq(x)u(x)dx=xsinxdx=xd(cosx)=xcosx+cosxdx=xcosx+sinxy=q(x)u(x)dx+Cu(x)=sinxxcosx+Cxsinx

Commented by mr W last updated on 07/Jan/20

Commented by john santu last updated on 08/Jan/20

thanks you sir

thanksyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com