Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77570 by TawaTawa last updated on 08/Jan/20

∫_( 0) ^( 1)   log(((1 + x +  x^2  + x^3  + x^4 )/(√(1 + (1/x) + (1/x^2 ) + (1/x^3 ) + (1/x^4 ))))) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\mathrm{log}\left(\frac{\mathrm{1}\:+\:\mathrm{x}\:+\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{x}^{\mathrm{4}} }{\sqrt{\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}}\right)\:\mathrm{dx} \\ $$

Answered by MJS last updated on 08/Jan/20

=∫_0 ^1 ln (x^2 (√(x^4 +x^3 +x^2 +x+1))) dx=  =2∫_0 ^1 ln x dx+(1/2)∫_0 ^1 ln (x^4 +x^3 +x^2 +x+1) dx         2∫_0 ^1 ln x dx=2[x(ln x −1)]_0 ^1 =            [lim_(x→0)  x(ln x −1) =0]       =−2         (1/2)∫_0 ^1 ln (x^4 +x^3 +x^2 +x+1) dx=            [α_j =e^(i((2πj)/5)) ; j=1, 2, 3, 4]       =(1/2)∫_0 ^1 ln (Π_(j=1) ^4 (x−α_j )) dx=       =(1/2)Σ_(j=1) ^4 (∫_0 ^1 ln (x−α_j ) dx)=       =(1/2)[Σ_(j=1) ^4 ((x−α_j )ln (x−α_j ))−2x]_0 ^1 =...       ...=((√5)/4)ln ((1+(√5))/2) +(5/8)ln 5 +((√(25+10(√5)))/(20))π−2    ⇒  answer is ((√5)/4)ln ((1+(√5))/2) +(5/8)ln 5 +((√(25+10(√5)))/(20))π−4

$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:\left({x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}\right)\:{dx}= \\ $$$$=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:{x}\:{dx}+\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{dx} \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:{x}\:{dx}=\mathrm{2}\left[{x}\left(\mathrm{ln}\:{x}\:−\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} = \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}\left(\mathrm{ln}\:{x}\:−\mathrm{1}\right)\:=\mathrm{0}\right] \\ $$$$\:\:\:\:\:=−\mathrm{2} \\ $$$$ \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{dx}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\alpha_{{j}} =\mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi{j}}{\mathrm{5}}} ;\:{j}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:\left(\underset{{j}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}\left({x}−\alpha_{{j}} \right)\right)\:{dx}= \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\underset{{j}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{ln}\:\left({x}−\alpha_{{j}} \right)\:{dx}\right)= \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\underset{{j}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left(\left({x}−\alpha_{{j}} \right)\mathrm{ln}\:\left({x}−\alpha_{{j}} \right)\right)−\mathrm{2}{x}\right]_{\mathrm{0}} ^{\mathrm{1}} =... \\ $$$$\:\:\:\:\:...=\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:+\frac{\mathrm{5}}{\mathrm{8}}\mathrm{ln}\:\mathrm{5}\:+\frac{\sqrt{\mathrm{25}+\mathrm{10}\sqrt{\mathrm{5}}}}{\mathrm{20}}\pi−\mathrm{2} \\ $$$$ \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:+\frac{\mathrm{5}}{\mathrm{8}}\mathrm{ln}\:\mathrm{5}\:+\frac{\sqrt{\mathrm{25}+\mathrm{10}\sqrt{\mathrm{5}}}}{\mathrm{20}}\pi−\mathrm{4} \\ $$

Commented by TawaTawa last updated on 08/Jan/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 12/Jan/20

Please sir. How did you get:    e^(i((2πj)/5) ) ;       j  =  1, 2, 3, 4

$$\mathrm{Please}\:\mathrm{sir}.\:\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}:\:\:\:\:\mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi\mathrm{j}}{\mathrm{5}}\:} ;\:\:\:\:\:\:\:\mathrm{j}\:\:=\:\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4} \\ $$

Commented by MJS last updated on 12/Jan/20

(x^4 +x^3 +x^2 +x+1)(x−1)=x^5 −1  ⇒ the roots are the 5^(th)  roots of unity  =e^(i((2πj)/5))  with j=0, 1, 2, 3, 4 but j=0 ⇔ x−1=0

$$\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}−\mathrm{1}\right)={x}^{\mathrm{5}} −\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{the}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity} \\ $$$$=\mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi{j}}{\mathrm{5}}} \:\mathrm{with}\:{j}=\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\:\mathrm{but}\:{j}=\mathrm{0}\:\Leftrightarrow\:{x}−\mathrm{1}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com