Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 776 by 123456 last updated on 12/Mar/15

(∂^2 u/∂x^2 )=v_1 (∂^2 u/(∂x∂t))+v_2 ^2 (∂^2 u/∂t^2 )  u(x,0)=f(x)  u_t (x,0)=g(x)

$$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={v}_{\mathrm{1}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}+{v}_{\mathrm{2}} ^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} } \\ $$$${u}\left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$$${u}_{{t}} \left({x},\mathrm{0}\right)={g}\left({x}\right) \\ $$

Commented by prakash jain last updated on 12/Mar/15

v_1  and v_2  are constants?  u(x,t)=f(x)+th(x,t)  u_t (x,t)=h(x,t)+th_t (x,t)  u_t (x,0)=h(x,0)+0=g(x)  Special case h(x,t)=g(x)  General Case h(x,t)=g(x)+ty(x,t)  u(x,t)=f(x)+tg(x)+t^2 y(x,t)

$${v}_{\mathrm{1}} \:\mathrm{and}\:{v}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{constants}? \\ $$$${u}\left({x},{t}\right)={f}\left({x}\right)+{th}\left({x},{t}\right) \\ $$$${u}_{{t}} \left({x},{t}\right)={h}\left({x},{t}\right)+{th}_{{t}} \left({x},{t}\right) \\ $$$${u}_{{t}} \left({x},\mathrm{0}\right)={h}\left({x},\mathrm{0}\right)+\mathrm{0}={g}\left({x}\right) \\ $$$$\mathrm{Special}\:\mathrm{case}\:{h}\left({x},{t}\right)={g}\left({x}\right) \\ $$$$\mathrm{General}\:\mathrm{Case}\:{h}\left({x},{t}\right)={g}\left({x}\right)+{ty}\left({x},{t}\right) \\ $$$${u}\left({x},{t}\right)={f}\left({x}\right)+{tg}\left({x}\right)+{t}^{\mathrm{2}} {y}\left({x},{t}\right) \\ $$

Commented by prakash jain last updated on 12/Mar/15

Special case solutin  u(x,t)=f(x)+tg(x)  f′′(x)+tg′′(x)=v_1 g′x)  g′′(x)=0⇒g(x)=kx+c_1   f′′(x)=v_1 k⇒f(x)=v_1 k(x^2 /2)+c_2 x+c_3   u(x,t)=kv_1 (x^2 /2)+c_2 x+c_3 +t(kx+c_1 )

$$\mathrm{Special}\:\mathrm{case}\:\mathrm{solutin} \\ $$$${u}\left({x},{t}\right)={f}\left({x}\right)+{tg}\left({x}\right) \\ $$$$\left.{f}''\left({x}\right)+{tg}''\left({x}\right)={v}_{\mathrm{1}} {g}'{x}\right) \\ $$$${g}''\left({x}\right)=\mathrm{0}\Rightarrow{g}\left({x}\right)={kx}+{c}_{\mathrm{1}} \\ $$$${f}''\left({x}\right)={v}_{\mathrm{1}} {k}\Rightarrow{f}\left({x}\right)={v}_{\mathrm{1}} {k}\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{c}_{\mathrm{2}} {x}+{c}_{\mathrm{3}} \\ $$$${u}\left({x},{t}\right)={kv}_{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{c}_{\mathrm{2}} {x}+{c}_{\mathrm{3}} +{t}\left({kx}+{c}_{\mathrm{1}} \right) \\ $$

Answered by prakash jain last updated on 12/Mar/15

u(x,t)=f(x)+tg(x)+t^2 y(x,t)  (∂u/∂t)=2ty+t^2 (∂y/∂t)+g(x)  (∂^2 u/∂t^2 )=2t(∂y/∂t)+2y+t^2 (∂^2 y/∂t^2 )+2t(∂y/∂t)=2y+4t(∂y/∂t)+t^2 (∂^2 y/∂t^2 )  f′′(x)+tg′′(x)+t^2 (∂^2 y/∂x^2 )        =v_1 [2t(∂y/∂x)+g′(x)+t^2 (∂^2 y/(∂x∂t))]+v_2 ^2 [2y+4t(∂y/∂t)+t^2 (∂^2 y/∂t^2 )]  This needs to be solved for general case.

$${u}\left({x},{t}\right)={f}\left({x}\right)+{tg}\left({x}\right)+{t}^{\mathrm{2}} {y}\left({x},{t}\right) \\ $$$$\frac{\partial{u}}{\partial{t}}=\mathrm{2}{ty}+{t}^{\mathrm{2}} \frac{\partial{y}}{\partial{t}}+{g}\left({x}\right) \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} }=\mathrm{2}{t}\frac{\partial{y}}{\partial{t}}+\mathrm{2}{y}+{t}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {y}}{\partial{t}^{\mathrm{2}} }+\mathrm{2}{t}\frac{\partial{y}}{\partial{t}}=\mathrm{2}{y}+\mathrm{4}{t}\frac{\partial{y}}{\partial{t}}+{t}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {y}}{\partial{t}^{\mathrm{2}} } \\ $$$${f}''\left({x}\right)+{tg}''\left({x}\right)+{t}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {y}}{\partial{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:={v}_{\mathrm{1}} \left[\mathrm{2}{t}\frac{\partial{y}}{\partial{x}}+{g}'\left({x}\right)+{t}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {y}}{\partial{x}\partial{t}}\right]+{v}_{\mathrm{2}} ^{\mathrm{2}} \left[\mathrm{2}{y}+\mathrm{4}{t}\frac{\partial{y}}{\partial{t}}+{t}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {y}}{\partial{t}^{\mathrm{2}} }\right] \\ $$$$\mathrm{This}\:\mathrm{needs}\:\mathrm{to}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{for}\:\mathrm{general}\:\mathrm{case}. \\ $$

Commented by prakash jain last updated on 12/Mar/15

Try y=C  g(x)=kx+c_1   f′′(x)=kv_1 +2Cv_2 ^2   f(x)=(x^2 /2)[kv_1 +2Cv_2 ^2 ]+c_2 x+c_3   u(x,t)=f(x)+tg(x)+Ct^2   (∂^2 u/∂t^2 )=2C  (∂u/∂t)=g(x)+2Ct  (∂^2 u/(∂x∂t))=k  (∂^2 u/∂x^2 )=kv_1 +2Cv_2 ^2   The solution meets all given conditions.  So given any y(x,t) a solution for u(x,t)  can be found.

$$\mathrm{Try}\:{y}={C} \\ $$$${g}\left({x}\right)={kx}+{c}_{\mathrm{1}} \\ $$$${f}''\left({x}\right)={kv}_{\mathrm{1}} +\mathrm{2}{Cv}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\left[{kv}_{\mathrm{1}} +\mathrm{2}{Cv}_{\mathrm{2}} ^{\mathrm{2}} \right]+{c}_{\mathrm{2}} {x}+{c}_{\mathrm{3}} \\ $$$${u}\left({x},{t}\right)={f}\left({x}\right)+{tg}\left({x}\right)+{Ct}^{\mathrm{2}} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} }=\mathrm{2}{C} \\ $$$$\frac{\partial{u}}{\partial{t}}={g}\left({x}\right)+\mathrm{2}{Ct} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}={k} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={kv}_{\mathrm{1}} +\mathrm{2}{Cv}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{solution}\:\mathrm{meets}\:\mathrm{all}\:\mathrm{given}\:\mathrm{conditions}. \\ $$$$\mathrm{So}\:\mathrm{given}\:\mathrm{any}\:{y}\left({x},{t}\right)\:\mathrm{a}\:\mathrm{solution}\:\mathrm{for}\:{u}\left({x},{t}\right) \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{found}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com