Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77725 by BK last updated on 09/Jan/20

Commented by mr W last updated on 09/Jan/20

have you got a solution sir?

$${have}\:{you}\:{got}\:{a}\:{solution}\:{sir}? \\ $$

Commented by abdomathmax last updated on 09/Jan/20

let A=ln(e+ln(e+ln(e+...)) ⇒  e^A =e +ln(e+ln(e+...) =e +A ⇒  e^A −A−e=0 let  f(x)=e^x −x−e   with x>0  we have f(0)=1−e  and lim_(x→+∞) f(x)=+∞  f^′ (x)=e^x −1>0 for x>0 ⇒f is increasing on  ]0,+∞[   varistion of f(x)  x        0                      +∞  f^′ (x)               +  f(x)    1−e        inc.  +∞  f(0)<0 ⇒ ∃ x_0 ∈]0,+∞ [    / f(x_0 )=0  f(1)=−1  and f(2)=e^2 −2−e >0 ⇒x_0  ∈]1,2[  we can find x_0  by iteration (newton method)  u_0 =(3/2) and  u_(n+1) =u_n −((f(u_n ))/(f^′ (u_n )))

$${let}\:{A}={ln}\left({e}+{ln}\left({e}+{ln}\left({e}+...\right)\right)\:\Rightarrow\right. \\ $$$${e}^{{A}} ={e}\:+{ln}\left({e}+{ln}\left({e}+...\right)\:={e}\:+{A}\:\Rightarrow\right. \\ $$$${e}^{{A}} −{A}−{e}=\mathrm{0}\:{let}\:\:{f}\left({x}\right)={e}^{{x}} −{x}−{e}\:\:\:{with}\:{x}>\mathrm{0} \\ $$$${we}\:{have}\:{f}\left(\mathrm{0}\right)=\mathrm{1}−{e}\:\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)=+\infty \\ $$$${f}^{'} \left({x}\right)={e}^{{x}} −\mathrm{1}>\mathrm{0}\:{for}\:{x}>\mathrm{0}\:\Rightarrow{f}\:{is}\:{increasing}\:{on} \\ $$$$\left.\right]\mathrm{0},+\infty\left[\:\:\:{varistion}\:{of}\:{f}\left({x}\right)\right. \\ $$$${x}\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\left({x}\right)\:\:\:\:\mathrm{1}−{e}\:\:\:\:\:\:\:\:{inc}.\:\:+\infty \\ $$$$\left.{f}\left(\mathrm{0}\right)<\mathrm{0}\:\Rightarrow\:\exists\:{x}_{\mathrm{0}} \in\right]\mathrm{0},+\infty\:\left[\:\:\:\:/\:{f}\left({x}_{\mathrm{0}} \right)=\mathrm{0}\right. \\ $$$$\left.{f}\left(\mathrm{1}\right)=−\mathrm{1}\:\:{and}\:{f}\left(\mathrm{2}\right)={e}^{\mathrm{2}} −\mathrm{2}−{e}\:>\mathrm{0}\:\Rightarrow{x}_{\mathrm{0}} \:\in\right]\mathrm{1},\mathrm{2}\left[\right. \\ $$$${we}\:{can}\:{find}\:{x}_{\mathrm{0}} \:{by}\:{iteration}\:\left({newton}\:{method}\right) \\ $$$${u}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{2}}\:{and}\:\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} −\frac{{f}\left({u}_{{n}} \right)}{{f}^{'} \left({u}_{{n}} \right)} \\ $$

Commented by BK last updated on 09/Jan/20

no answer

$$\mathrm{no}\:\mathrm{answer} \\ $$

Commented by msup trace by abdo last updated on 09/Jan/20

study the numerical analysis  first instead of saying no answer  ...

$${study}\:{the}\:{numerical}\:{analysis} \\ $$$${first}\:{instead}\:{of}\:{saying}\:{no}\:{answer} \\ $$$$... \\ $$

Answered by MJS last updated on 09/Jan/20

x≈−2.64745∨x≈1.42037

$${x}\approx−\mathrm{2}.\mathrm{64745}\vee{x}\approx\mathrm{1}.\mathrm{42037} \\ $$

Answered by mr W last updated on 09/Jan/20

x=ln (e+ln (e+ln (e+...)))  x=ln (e+x)  e^x =x+e  e^x e^e =(x+e)e^e   e^(x+e) =(x+e)e^e   (x+e)e^(−(x+e)) e^e =1  −(x+e)e^(−(x+e)) =−(1/e^e )  −(x+e)=W(−(1/e^e ))  ⇒x=−[e+W(−(1/e^e ))]≈−[e+ { ((−4.138651946)),((−0.070831586)) :}]= { ((1.42037)),((−2.64745)) :}

$${x}=\mathrm{ln}\:\left({e}+\mathrm{ln}\:\left({e}+\mathrm{ln}\:\left({e}+...\right)\right)\right) \\ $$$${x}=\mathrm{ln}\:\left({e}+{x}\right) \\ $$$${e}^{{x}} ={x}+{e} \\ $$$${e}^{{x}} {e}^{{e}} =\left({x}+{e}\right){e}^{{e}} \\ $$$${e}^{{x}+{e}} =\left({x}+{e}\right){e}^{{e}} \\ $$$$\left({x}+{e}\right){e}^{−\left({x}+{e}\right)} {e}^{{e}} =\mathrm{1} \\ $$$$−\left({x}+{e}\right){e}^{−\left({x}+{e}\right)} =−\frac{\mathrm{1}}{{e}^{{e}} } \\ $$$$−\left({x}+{e}\right)=\mathbb{W}\left(−\frac{\mathrm{1}}{{e}^{{e}} }\right) \\ $$$$\Rightarrow{x}=−\left[{e}+\mathbb{W}\left(−\frac{\mathrm{1}}{{e}^{{e}} }\right)\right]\approx−\left[{e}+\begin{cases}{−\mathrm{4}.\mathrm{138651946}}\\{−\mathrm{0}.\mathrm{070831586}}\end{cases}\right]=\begin{cases}{\mathrm{1}.\mathrm{42037}}\\{−\mathrm{2}.\mathrm{64745}}\end{cases} \\ $$

Commented by BK last updated on 09/Jan/20

thanks

$$\mathrm{thanks} \\ $$

Commented by MJS last updated on 09/Jan/20

now Sir BK understands how to solve problems  like this one, simply use W(x)!

$$\mathrm{now}\:\mathrm{Sir}\:\mathrm{BK}\:\mathrm{understands}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{problems} \\ $$$$\mathrm{like}\:\mathrm{this}\:\mathrm{one},\:\mathrm{simply}\:\mathrm{use}\:\mathbb{W}\left({x}\right)! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com