Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77751 by abdomathmax last updated on 09/Jan/20

calculate ∫_(−∞) ^(+∞)  ((cos(e^x +e^(−x) ))/((x^2 +x+1)^2 ))dx

calculate+cos(ex+ex)(x2+x+1)2dx

Commented by msup trace by abdo last updated on 10/Jan/20

let I=∫_(−∞) ^(+∞) ((cos(e^x  +e^(−x) ))/((x^2  +x+1)^2 )) dx ⇒  I=Re(∫_(−∞) ^(+∞)   (e^(i(e^x +e^(−x) )) /((x^2 +x+1)^2 ))dx)  let ϕ(z)=(e^(i(e^z +e^(−z) )) /((z^2  +z+1)^2 )) poles of ϕ?  z^2 +z+1=0 →Δ=−3 ⇒  z_1 =((−1+i(√3))/2) =e^(i((2π)/3))  and z_2 =((−1−i(√3))/2)  =e^(−((i2π)/3))  ⇒ϕ(z)=(e^(i(e^z +e^(−z) )) /((z−e^((i2π)/3) )^2 (z−e^(−((i2π)/3)) )^2 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =  2iπ{ Re(ϕ,e^((i2π)/3) )+Res(ϕ,e^(−((i2π)/3)) )}  Res(ϕ,e^((i2π)/3) )=lim_(z→e^((i2π)/3) ) (1/((2−1)!)){(z−e^(i((2π)/3)) )ϕ(z)}^((1))

letI=+cos(ex+ex)(x2+x+1)2dxI=Re(+ei(ex+ex)(x2+x+1)2dx)letφ(z)=ei(ez+ez)(z2+z+1)2polesofφ?z2+z+1=0Δ=3z1=1+i32=ei2π3andz2=1i32=ei2π3φ(z)=ei(ez+ez)(zei2π3)2(zei2π3)2+φ(z)dz=2iπ{Re(φ,ei2π3)+Res(φ,ei2π3)}Res(φ,ei2π3)=limzei2π31(21)!{(zei2π3)φ(z)}(1)

Commented by mathmax by abdo last updated on 10/Jan/20

forgive ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^((i2π)/3) )  and  Res(ϕ,e^(i((2π)/3)) )=lim_(z→e^((i2π)/3) )    (1/((2−1)!)){(z−e^((i2π)/3) )ϕ(z)}^((1))   =lim_(z→e^((i2π)/3) )     {(e^(i( e^z  +e^(−z) )) /((z−e^(−((i2π)/3)) )^2 ))}  =lim_(z→e^((i2π)/3) )    {  ((i(e^z −e^(−z) )e^(i(e^z +e^(−z) )) (z−e^(−((i2π)/3)) )^2 −2(z−e^(−((i2π)/3)) )e^(i(e^x +e^(−x) )) )/((z−e^(−((i2π)/3)) )^4 ))}  =lim_(z→e^((i2π)/3) )    {{ i(e^z −e^(−z) )(z−e^(−((i2π)/3)) )−2}e^(i(e^z −e^(−z) )) ×(z−e^(−((i2π)/3)) )^(−3)   =(({−2sin(((2π)/3))2 sh( e^((i2π)/3) )−2}e^(2ish(e^((i2π)/3) )) )/((2i sin(((2π)/3)))^3 ))  =((−2{2sin(((2π)/3))sh(e^((i2π)/3) )+1} e^(2ish(e^((i2π)/3) )) )/(−8i(((√3)/2))^3 )) =((((√3)sh(e^((i2π)/3) )+1)e^(2ish(e^(((i2π)/3) ) )) )/(4i ×(3(√3))))  =(((1+(√3)sh(−(1/2)+i((√3)/2)))e^(2i sh(−(1/2)+((i(√3))/2))) )/(12i(√3)))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =(π/(6(√3)))(1+(√3)×((e^(−(1/2)+i((√3)/2)) −e^(−(−(1/2)+((i(√3))/2))) )/2)) e^(2i(((e^(−(1/2)+((i(√3))/2)) −e^(−(−(1/2)+((i(√3))/2))) )/2))   =(π/(6(√3)))( 1+((√3)/2)( e^(−(1/2)) (cos(((√3)/2))+isin(((√3)/2))−e^(1/2) (cos(((√3)/2))−isin(((√3)/2)))  ×e^(i( e^(−(1/2)) (cos(((√3)/2))+isin(((√3)/2))−e^(1/2) (cos(((√3)/2))−isin(((√3)/2))))   rest to extract Re(of this quantity)...be continued...

forgive+φ(z)dz=2iπRes(φ,ei2π3)andRes(φ,ei2π3)=limzei2π31(21)!{(zei2π3)φ(z)}(1)=limzei2π3{ei(ez+ez)(zei2π3)2}=limzei2π3{i(ezez)ei(ez+ez)(zei2π3)22(zei2π3)ei(ex+ex)(zei2π3)4}=limzei2π3{{i(ezez)(zei2π3)2}ei(ezez)×(zei2π3)3={2sin(2π3)2sh(ei2π3)2}e2ish(ei2π3)(2isin(2π3))3=2{2sin(2π3)sh(ei2π3)+1}e2ish(ei2π3)8i(32)3=(3sh(ei2π3)+1)e2ish(ei2π3)4i×(33)=(1+3sh(12+i32))e2ish(12+i32)12i3+φ(z)dz=π63(1+3×e12+i32e(12+i32)2)e2i(e12+i32e(12+i32)2=π63(1+32(e12(cos(32)+isin(32)e12(cos(32)isin(32))×ei(e12(cos(32)+isin(32)e12(cos(32)isin(32))resttoextractRe(ofthisquantity)...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com