All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 77751 by abdomathmax last updated on 09/Jan/20
calculate∫−∞+∞cos(ex+e−x)(x2+x+1)2dx
Commented by msup trace by abdo last updated on 10/Jan/20
letI=∫−∞+∞cos(ex+e−x)(x2+x+1)2dx⇒I=Re(∫−∞+∞ei(ex+e−x)(x2+x+1)2dx)letφ(z)=ei(ez+e−z)(z2+z+1)2polesofφ?z2+z+1=0→Δ=−3⇒z1=−1+i32=ei2π3andz2=−1−i32=e−i2π3⇒φ(z)=ei(ez+e−z)(z−ei2π3)2(z−e−i2π3)2∫−∞+∞φ(z)dz=2iπ{Re(φ,ei2π3)+Res(φ,e−i2π3)}Res(φ,ei2π3)=limz→ei2π31(2−1)!{(z−ei2π3)φ(z)}(1)
Commented by mathmax by abdo last updated on 10/Jan/20
forgive∫−∞+∞φ(z)dz=2iπRes(φ,ei2π3)andRes(φ,ei2π3)=limz→ei2π31(2−1)!{(z−ei2π3)φ(z)}(1)=limz→ei2π3{ei(ez+e−z)(z−e−i2π3)2}=limz→ei2π3{i(ez−e−z)ei(ez+e−z)(z−e−i2π3)2−2(z−e−i2π3)ei(ex+e−x)(z−e−i2π3)4}=limz→ei2π3{{i(ez−e−z)(z−e−i2π3)−2}ei(ez−e−z)×(z−e−i2π3)−3={−2sin(2π3)2sh(ei2π3)−2}e2ish(ei2π3)(2isin(2π3))3=−2{2sin(2π3)sh(ei2π3)+1}e2ish(ei2π3)−8i(32)3=(3sh(ei2π3)+1)e2ish(ei2π3)4i×(33)=(1+3sh(−12+i32))e2ish(−12+i32)12i3⇒∫−∞+∞φ(z)dz=π63(1+3×e−12+i32−e−(−12+i32)2)e2i(e−12+i32−e−(−12+i32)2=π63(1+32(e−12(cos(32)+isin(32)−e12(cos(32)−isin(32))×ei(e−12(cos(32)+isin(32)−e12(cos(32)−isin(32))resttoextractRe(ofthisquantity)...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com