Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77752 by abdomathmax last updated on 09/Jan/20

let f(λ) =∫_(−∞) ^(+∞)  ((sin( λe^x  +e^(−x) ))/(x^2  +λ^2 ))dx with λ≥0  1) detdrmine a explicit form of f(λ)  2) calculate f^′ (λ) at form ofintergral and find  its value.

letf(λ)=+sin(λex+ex)x2+λ2dxwithλ01)detdrmineaexplicitformoff(λ)2)calculatef(λ)atformofintergralandfinditsvalue.

Commented by mathmax by abdo last updated on 10/Jan/20

f(λ)=∫_(−∞) ^(+∞)  ((sin(λe^x  +e^(−x) ))/(x^2  +λ^2 )) ⇒f(λ)=_(x=λt)   ∫_(−∞) ^(+∞)  ((sin(λ e^(λt)  +e^(−λt) ))/(λ^2 (t^2  +1)))λ(dt)  =(1/λ) ∫_(−∞) ^(+∞)  ((sin(λ e^(λt)  +e^(−λt) ))/(t^2  +1))dt    (  we take λ>0) ⇒  λf(λ) =Im(∫_(−∞) ^(+∞)  (e^(i( λe^(λt) +e^(−λt) )) /(t^2  +1))dt)let W(z)=(e^(i(λ e^(λz)  +e^(−λz) )) /(z^2  +1))  ⇒W(z) =(e^(i(λ e^(λz)  +e^(−λz) )) /((z−i)(z+i))) and ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  =2iπ ×(e^(i(λ e^(iλ)  +e^(−iλ) )) /(2i))  we have   i(λ e^(iλ)  +e^(−iλ) ) =i(λ cos(λ)+λi sin(λ) +cos(λ)−isin(λ))  =i λ cos(λ)−λsin(λ) +icos(λ) +sinλ  =(1−λ)sinλ +i(1+λ)cos(λ) ⇒  e^(i(λ e^(iλ)  +e^(−iλ)) )  =e^((1−λ)sin(λ)) { cos(1+λ)cosλ +isin(1+λ)cosλ} ⇒  ∫_(−∞) ^(+∞)  W(z)dz =π e^((1−λ)sinλ)  cos((1+λ)cosλ) +i π e^((1−λ)sinλ) sin((1+λ)cosλ)  ⇒λ f(λ) =π e^((1−λ)sinλ)  sin{(1+λ)cosλ} ⇒  f(λ) =(π/λ)e^((1−λ)sinλ)  sin{(1+λ)cosλ}     (λ>0)

f(λ)=+sin(λex+ex)x2+λ2f(λ)=x=λt+sin(λeλt+eλt)λ2(t2+1)λ(dt)=1λ+sin(λeλt+eλt)t2+1dt(wetakeλ>0)λf(λ)=Im(+ei(λeλt+eλt)t2+1dt)letW(z)=ei(λeλz+eλz)z2+1W(z)=ei(λeλz+eλz)(zi)(z+i)and+W(z)dz=2iπRes(W,i)=2iπ×ei(λeiλ+eiλ)2iwehavei(λeiλ+eiλ)=i(λcos(λ)+λisin(λ)+cos(λ)isin(λ))=iλcos(λ)λsin(λ)+icos(λ)+sinλ=(1λ)sinλ+i(1+λ)cos(λ)ei(λeiλ+eiλ)=e(1λ)sin(λ){cos(1+λ)cosλ+isin(1+λ)cosλ}+W(z)dz=πe(1λ)sinλcos((1+λ)cosλ)+iπe(1λ)sinλsin((1+λ)cosλ)λf(λ)=πe(1λ)sinλsin{(1+λ)cosλ}f(λ)=πλe(1λ)sinλsin{(1+λ)cosλ}(λ>0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com