Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 77842 by jagoll last updated on 11/Jan/20

given   f(x)= x^2 +sin(2x) + ∫ _0 ^(π/4) f(x)dx  f((π/2))=?

givenf(x)=x2+sin(2x)+π40f(x)dxf(π2)=?

Answered by mr W last updated on 11/Jan/20

let ∫_0 ^(π/4) f(x)dx=a=constant  f(x)= x^2 +sin(2x)+a  ∫_0 ^(π/4) f(x)dx=[(x^3 /3)−((cos (2x))/2)+ax]_0 ^(π/4) =a  (π^3 /(192))+(1/2)+((aπ)/4)=a  ⇒a=((π^3 +96)/(48(4−π)))  f(x)= x^2 +sin(2x)+((π^3 +96)/(48(4−π)))  f((π/2))= (π^2 /4)+((π^3 +96)/(48(4−π)))=(((48−11π)π^2 +96)/(48(4−π)))

let0π4f(x)dx=a=constantf(x)=x2+sin(2x)+a0π4f(x)dx=[x33cos(2x)2+ax]0π4=aπ3192+12+aπ4=aa=π3+9648(4π)f(x)=x2+sin(2x)+π3+9648(4π)f(π2)=π24+π3+9648(4π)=(4811π)π2+9648(4π)

Commented by jagoll last updated on 11/Jan/20

thanks you sir

thanksyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com