Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77965 by mr W last updated on 12/Jan/20

solve for x,y,z ∈N  35x+21y+60z=665

solveforx,y,zN35x+21y+60z=665

Commented by john santu last updated on 12/Jan/20

diopthantine equation sir?

diopthantineequationsir?

Commented by mr W last updated on 12/Jan/20

yes

yes

Commented by TawaTawa last updated on 12/Jan/20

35x + 3(7y + 20z)  =  665  Let  u  =  7y + 20z  35x + 3u  =  665      ...... (ii)  Particular solution.    x_1   =  1,    u_1  = 210  General solution for  (ii)  ∴         x  =  1 + 3m  35(1 + 3m) + 3u  =  665      ..... (ii)  ∴       35 + 105m + 3u  =  665  ∴       3u  =  665  − 35 − 105m  ∴       3u  =  630  − 105m  ∴           u  =  210  − 35m    (with  m  be any integer)  Particular solution for         7y + 20z  =  1                 (y_1   =   3,     z_1   =  − 1)  ∴       y   =   3 + 20k  ∴    7(3 + 20k) + 20z  =  1,          21 + 140k + 20z  =  1  ∴     20z  =  1 − 21 − 140k  ∴     20z  =  − 20 − 140k,           z   =  − 1 − 7k    General solution of  35x + 21y + 60z  = 665        y  =  (3 + 20k)u      =   3u + 20uk    =   3u + 20n        y   =  3(210 − 35m) + 20n   =   630 − 105m + 20n           z  =  (− 1 − 7k)u   =  − u − 7uk   =  − u − 7n         z  =  − (210 − 35m) − 7n   =  − 210 + 35m − 7n  Therefore,        x  =  1 + 3m        y  =  630 − 105m + 20n        z  =  − 210 + 35m − 7n  m, n  be any integer

35x+3(7y+20z)=665Letu=7y+20z35x+3u=665......(ii)Particularsolution.x1=1,u1=210Generalsolutionfor(ii)x=1+3m35(1+3m)+3u=665.....(ii)35+105m+3u=6653u=66535105m3u=630105mu=21035m(withmbeanyinteger)Particularsolutionfor7y+20z=1(y1=3,z1=1)y=3+20k7(3+20k)+20z=1,21+140k+20z=120z=121140k20z=20140k,z=17kGeneralsolutionof35x+21y+60z=665y=(3+20k)u=3u+20uk=3u+20ny=3(21035m)+20n=630105m+20nz=(17k)u=u7uk=u7nz=(21035m)7n=210+35m7nTherefore,x=1+3my=630105m+20nz=210+35m7nm,nbeanyinteger

Commented by TawaTawa last updated on 12/Jan/20

Sir mrW,  i used the method you thought me sometime ago.  Help me check.

SirmrW,iusedthemethodyouthoughtmesometimeago.Helpmecheck.

Commented by mr W last updated on 12/Jan/20

but in current case we are searching  only positive intergers.

butincurrentcasewearesearchingonlypositiveintergers.

Commented by TawaTawa last updated on 12/Jan/20

Alright sir, i will learn that too.

Alrightsir,iwilllearnthattoo.

Commented by mr W last updated on 12/Jan/20

such that x,y,z>0 you get only two  solutions:  m=0,n=−31 or  m=1,n=−26  i.e. x=1,y=10,z=7  or x=4,y=5,z=7

suchthatx,y,z>0yougetonlytwosolutions:m=0,n=31orm=1,n=26i.e.x=1,y=10,z=7orx=4,y=5,z=7

Commented by TawaTawa last updated on 12/Jan/20

God bless you sir. I appreciate

Godblessyousir.Iappreciate

Commented by TawaTawa last updated on 12/Jan/20

Sir, from bere, i will assume the values for  m and n?  such that   x, y, z  >  0

Sir,frombere,iwillassumethevaluesformandn?suchthatx,y,z>0

Answered by key of knowledge last updated on 12/Jan/20

35x∧60z∧665∣5⇒21y∣5⇒y=5y^′   35x∧21y∧665∣7⇒60z∣5⇒z=7z^′   35x+105y^′ +420z^′ =665⇒x+3y^′ +12z^′ =19  (i) z^′ =1,y^′ =2,x=1⇒z=7,y=10,x=1  (ii) z^′ =1,y^′ =1,x=4⇒z=7,y=5,x=4

35x60z665521y5y=5y35x21y665760z5z=7z35x+105y+420z=665x+3y+12z=19(i)z=1,y=2,x=1z=7,y=10,x=1(ii)z=1,y=1,x=4z=7,y=5,x=4

Commented by mr W last updated on 12/Jan/20

very nice! thanks!

verynice!thanks!

Commented by jagoll last updated on 13/Jan/20

what the meaning 60z∣5 ?   divided by 5 ? or mod 5 ?

whatthemeaning60z5?dividedby5?ormod5?

Commented by mr W last updated on 13/Jan/20

60z∣5 is typo. he means 60z∣7, i.e. 60z  must also be divisible by 7.

60z5istypo.hemeans60z7,i.e.60zmustalsobedivisibleby7.

Commented by jagoll last updated on 13/Jan/20

oo typo sir. all right thanks sir

ootyposir.allrightthankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com