Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77990 by peter frank last updated on 12/Jan/20

Find the equation to the  two circles each of  which touch the three circle  x^2 +y^2 =4a^2   x^2 +y^2 +2ax=0  x^2 +y^2 −2ax=0

$${Find}\:{the}\:{equation}\:{to}\:{the} \\ $$$${two}\:{circles}\:{each}\:{of} \\ $$$${which}\:{touch}\:{the}\:{three}\:{circle} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{ax}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}=\mathrm{0} \\ $$$$ \\ $$

Answered by john santu last updated on 18/Jan/20

(1)x^2 +y^2 =(2a)^2  , C_1 (0,0) ,r_1 =2a  (2)(x+a)^2 +y^2 =a^2  ,C_2 (−a,0) ,r_2 =a  (3) x^2 +(y−a)^2 =a^2  , C_3 (0,a) ,r_3 =a  The circle equation that will   look for is centered at point  (p,q) with radius r_4   ⇒r_4 =(√(p^2 +q^2  )) , r_4 = (√((p+a)^2 +q^2  )), r_4 =(√(p^2 +(q−a)^2 ))

$$\left(\mathrm{1}\right){x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\mathrm{2}{a}\right)^{\mathrm{2}} \:,\:{C}_{\mathrm{1}} \left(\mathrm{0},\mathrm{0}\right)\:,{r}_{\mathrm{1}} =\mathrm{2}{a} \\ $$$$\left(\mathrm{2}\right)\left({x}+{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \:,{C}_{\mathrm{2}} \left(−{a},\mathrm{0}\right)\:,{r}_{\mathrm{2}} ={a} \\ $$$$\left(\mathrm{3}\right)\:{x}^{\mathrm{2}} +\left({y}−{a}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \:,\:{C}_{\mathrm{3}} \left(\mathrm{0},{a}\right)\:,{r}_{\mathrm{3}} ={a} \\ $$$${The}\:{circle}\:{equation}\:{that}\:{will}\: \\ $$$${look}\:{for}\:{is}\:{centered}\:{at}\:{point} \\ $$$$\left({p},{q}\right)\:{with}\:{radius}\:{r}_{\mathrm{4}} \\ $$$$\Rightarrow{r}_{\mathrm{4}} =\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} \:}\:,\:{r}_{\mathrm{4}} =\:\sqrt{\left({p}+{a}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} \:},\:{r}_{\mathrm{4}} =\sqrt{{p}^{\mathrm{2}} +\left({q}−{a}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Commented by john santu last updated on 18/Jan/20

⇒p^2 +q^2 =p^2 +2ap+a^2 +q^2   p = −(a/2).  ⇒p^2 +q^2 =p^2 +q^2 −2aq+a^2   q = (a/2) . now we calculate   r_4  = (√((1/4)a^2 +(1/4)a^2 )) = (1/2)a(√2).  finally ∴ (x+(a/2))^2 +(y−(a/2))^2 =(a^2 /2)

$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} ={p}^{\mathrm{2}} +\mathrm{2}{ap}+{a}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$${p}\:=\:−\frac{{a}}{\mathrm{2}}. \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{aq}+{a}^{\mathrm{2}} \\ $$$${q}\:=\:\frac{{a}}{\mathrm{2}}\:.\:{now}\:{we}\:{calculate}\: \\ $$$${r}_{\mathrm{4}} \:=\:\sqrt{\frac{\mathrm{1}}{\mathrm{4}}{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{a}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}{a}\sqrt{\mathrm{2}}. \\ $$$${finally}\:\therefore\:\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$

Commented by mr W last updated on 18/Jan/20

sir:  but (red) circle (x+(a/2))^2 +(y−(a/2))^2 =(a^2 /2)  doesn′t touch the three given circles!

$${sir}: \\ $$$${but}\:\left({red}\right)\:{circle}\:\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${doesn}'{t}\:{touch}\:{the}\:{three}\:{given}\:{circles}! \\ $$

Commented by mr W last updated on 18/Jan/20

Commented by john santu last updated on 19/Jan/20

sorry mister, that instead i circle  through the center of three circles   given.

$${sorry}\:{mister},\:{that}\:{instead}\:{i}\:{circle} \\ $$$${through}\:{the}\:{center}\:{of}\:{three}\:{circles}\: \\ $$$${given}. \\ $$

Answered by mr W last updated on 18/Jan/20

x^2 +y^2 =(2a)^2  ⇒circle (0,0), radius 2a  (x+a)^2 +y^2 =a^2 ⇒circle (−a,0), radius a  (x−a)^2 +y^2 =a^2 ⇒circle (a,0), radius a  fourth circle (0,c),radius r  c+r=2a  c^2 +a^2 =(a+r)^2   4a^2 −4ar+r^2 +a^2 =a^2 +r^2 +2ar  4a^2 =6ar  ⇒r=((2a)/3)  ⇒c=2a−((2a)/3)=((4a)/3)  eqn. of fourth circle (two possibilties):  x^2 +(y±((4a)/3))^2 =(((2a)/3))^2

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\mathrm{2}{a}\right)^{\mathrm{2}} \:\Rightarrow{circle}\:\left(\mathrm{0},\mathrm{0}\right),\:{radius}\:\mathrm{2}{a} \\ $$$$\left({x}+{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \Rightarrow{circle}\:\left(−{a},\mathrm{0}\right),\:{radius}\:{a} \\ $$$$\left({x}−{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \Rightarrow{circle}\:\left({a},\mathrm{0}\right),\:{radius}\:{a} \\ $$$${fourth}\:{circle}\:\left(\mathrm{0},{c}\right),{radius}\:{r} \\ $$$${c}+{r}=\mathrm{2}{a} \\ $$$${c}^{\mathrm{2}} +{a}^{\mathrm{2}} =\left({a}+{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ar}+{r}^{\mathrm{2}} +{a}^{\mathrm{2}} ={a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} =\mathrm{6}{ar} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}{a}}{\mathrm{3}} \\ $$$$\Rightarrow{c}=\mathrm{2}{a}−\frac{\mathrm{2}{a}}{\mathrm{3}}=\frac{\mathrm{4}{a}}{\mathrm{3}} \\ $$$${eqn}.\:{of}\:{fourth}\:{circle}\:\left({two}\:{possibilties}\right): \\ $$$${x}^{\mathrm{2}} +\left({y}\pm\frac{\mathrm{4}{a}}{\mathrm{3}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{2}{a}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$

Commented by mr W last updated on 18/Jan/20

Commented by peter frank last updated on 18/Jan/20

where c+r=2a ? come from sir

$${where}\:{c}+{r}=\mathrm{2}{a}\:?\:{come}\:{from}\:{sir} \\ $$

Commented by mr W last updated on 18/Jan/20

Commented by mr W last updated on 18/Jan/20

OC+CB=OB  ⇒c+r=2a  OC^2 +OA^2 =AC^2   ⇒c^2 +a^2 =(a+r)^2

$${OC}+{CB}={OB} \\ $$$$\Rightarrow{c}+{r}=\mathrm{2}{a} \\ $$$${OC}^{\mathrm{2}} +{OA}^{\mathrm{2}} ={AC}^{\mathrm{2}} \\ $$$$\Rightarrow{c}^{\mathrm{2}} +{a}^{\mathrm{2}} =\left({a}+{r}\right)^{\mathrm{2}} \\ $$

Commented by john santu last updated on 19/Jan/20

good sir

$${good}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com