Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77991 by peter frank last updated on 12/Jan/20

If  P_1   P_2   P_3   will be taken  as point in an Argand  diagram representing  complex number  Z_1 ,Z_2 ,Z_3   and point  P_(1 ) ,P_2 ,P_3  is an equalateral  triangle.show that  (Z_2 −Z_3 )^2 +(Z_3 −Z_1 )^2 +(Z_1 −Z_2 )^2 =0

IfP1P2P3willbetakenaspointinanArganddiagramrepresentingcomplexnumberZ1,Z2,Z3andpointP1,P2,P3isanequalateraltriangle.showthat(Z2Z3)2+(Z3Z1)2+(Z1Z2)2=0

Answered by mind is power last updated on 13/Jan/20

the equality is symetrice in sens of   P(z_1 ,z_2 ,z_3 )=(z_1 −z_2 )^2 +(z_2 −z_3 )^2 +(z_1 −z_3 )^2 =p(z_1 ,z_3 ,z_2 ).....  P_1 P_2 P_3   equalateral ⇒((z_3 −z_2 )/(z_3 −z_1 ))=e^((iπ)/3) ,we can chose this   cause of the symetri      ⇒z_3 =((z_2 −z_1 e^((iπ)/3) )/(1−e^((iπ)/3) ))=(z_2 −z_1 e^((iπ)/3) )e^((iπ)/3)   z_3 =z_2 e^((iπ)/3) −z_1 e^((2iπ)/3)   z_3 −z_2 =(z_2 −z_1 )e^((2iπ)/3)   z_3 −z_1 =(z_2 −z_1 )e^((iπ)/3)   (z_3 −z_2 )^2 +(z_3 −z_1 )^2 +(z_1 −z_2 )^2 =(z_2 −z_1 )^2 e^((4iπ)/3) +(z_2 −z_1 )^2 e^((2iπ)/3) +(z_2 −z_1 )^2   letj=e^((2iπ)/3)   =(z_2 −z_1 )^2 (1+j+j^2 )  since j^2 +j+1=0  ⇒(z_3 −z_2 )^2 +(z_3 −z_1 )^2 +(z_2 −z_1 )^2 =0

theequalityissymetriceinsensofP(z1,z2,z3)=(z1z2)2+(z2z3)2+(z1z3)2=p(z1,z3,z2).....P1P2P3equalateralz3z2z3z1=eiπ3,wecanchosethiscauseofthesymetriz3=z2z1eiπ31eiπ3=(z2z1eiπ3)eiπ3z3=z2eiπ3z1e2iπ3z3z2=(z2z1)e2iπ3z3z1=(z2z1)eiπ3(z3z2)2+(z3z1)2+(z1z2)2=(z2z1)2e4iπ3+(z2z1)2e2iπ3+(z2z1)2letj=e2iπ3=(z2z1)2(1+j+j2)sincej2+j+1=0(z3z2)2+(z3z1)2+(z2z1)2=0

Answered by MJS last updated on 13/Jan/20

start with  P_(j+1) ^� = (((acos (α+((2π)/3)j))),((asin (α+((2π)/3)j))) ) ; j=0, 1, 2  obviously this gives an equilateral triangle  for any value of α  now shift by s^→ = ((p),(q) )  ⇒ P_(j+1) =P_(j+1) ^� +s^→ = (((p+acos (α+((2π)/3)j))),((q+asin (α+((2π)/3)j))) ) ; j=0, 1, 2  ⇒  Z_1 =p+acos α +i(q+asin α)  Z_2 =p+acos (α+((2π)/3)) +i(q+asin (α+((2π)/3)))  Z_3 =p+acos (α+((4π)/3)) +i(q+asin (α+((4π)/3)))  cos (α+((2π)/3)) =−((cos α +(√3)sin α)/2)  sin (α+((2π)/3)) =(((√3)cos α −sin α)/2)  cos (α+((4π)/3)) =−((cos α −(√3)sin α)/2)  sin (α+((4π)/3)) =−(((√3)cos α +sin α)/2)  let u=cos α ∧v=sin α  Z_1 =p+au+i(q+av)  Z_2 =p−(a/2)(u+(√3)v)+i(q+(a/2)((√3)u−v))  Z_3 =p−(a/2)(u−(√3)v)+i(q−(a/2)((√3)u+v))  (Z_1 −Z_2 )^2 =((((√3)a)/2)(((√3)u+v)−i(u−(√3)v)))^2 =  =((3a^2 )/2)((u^2 +2(√3)uv−v^2 )−i((√3)u^2 −2uv−(√3)v^2 ))  (Z_1 −Z_3 )^2 =((((√3)a)/2)(((√3)u−v)+i(u+(√3)v)))^2 =  =((3a^2 )/2)((u^2 −2(√3)uv−v^2 )+i((√3)u^2 +2uv−(√3)v^2 ))  (Z_2 −Z_3 )^2 =((√3)a(−v+iu))^2 =  =3a^2 ((v^2 −u^2 )−2iuv)  adding them gives 0

startwithP¯j+1=(acos(α+2π3j)asin(α+2π3j));j=0,1,2obviouslythisgivesanequilateraltriangleforanyvalueofαnowshiftbys=(pq)Pj+1=P¯j+1+s=(p+acos(α+2π3j)q+asin(α+2π3j));j=0,1,2Z1=p+acosα+i(q+asinα)Z2=p+acos(α+2π3)+i(q+asin(α+2π3))Z3=p+acos(α+4π3)+i(q+asin(α+4π3))cos(α+2π3)=cosα+3sinα2sin(α+2π3)=3cosαsinα2cos(α+4π3)=cosα3sinα2sin(α+4π3)=3cosα+sinα2letu=cosαv=sinαZ1=p+au+i(q+av)Z2=pa2(u+3v)+i(q+a2(3uv))Z3=pa2(u3v)+i(qa2(3u+v))(Z1Z2)2=(3a2((3u+v)i(u3v)))2==3a22((u2+23uvv2)i(3u22uv3v2))(Z1Z3)2=(3a2((3uv)+i(u+3v)))2==3a22((u223uvv2)+i(3u2+2uv3v2))(Z2Z3)2=(3a(v+iu))2==3a2((v2u2)2iuv)addingthemgives0

Commented by mind is power last updated on 13/Jan/20

hello sir Mjs its been long times  hope all going good for you

hellosirMjsitsbeenlongtimeshopeallgoinggoodforyou

Commented by MJS last updated on 13/Jan/20

thank you, I hope 2020 is going to be a good  year for you too

thankyou,Ihope2020isgoingtobeagoodyearforyoutoo

Commented by mind is power last updated on 13/Jan/20

thanx sir

thanxsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com