Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77995 by mathmax by abdo last updated on 12/Jan/20

calculate ∫_(−∞) ^(+∞)  ((arctan(2x+1))/((x^2 +3)^2 ))dx

calculate+arctan(2x+1)(x2+3)2dx

Commented by msup trace by abdo last updated on 13/Jan/20

I =∫_(−∞) ^(+∞)  ((arctan(2x+1))/((x^2 +3)^2 ))dx ⇒  I=_(x=(√3)t)    ∫_(−∞) ^(+∞)  ((arctan(2(√3)t+1))/(9(t^2 +1)^2 ))(√3)dt  =((√3)/9) ∫_(−∞) ^(+∞)  ((arctan(2(√3)t+1))/((t^2 +1)^2 ))dt  let ϕ(z)=((arctan(2(√3)z+1))/((z^2  +1)^2 )) ⇒  ϕ(z)=((arctan(2(√3)z +1))/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   {((arctan(2(√3)z +1))/((z+i)^2 ))}^((1))   =lim_(z→i)   ((((2(√3))/(1+(2(√3)z+1)^2 ))(z+i)^2 −2(z+i)arctan(2(√3)z +1))/((z+i)^4 ))  =lim_(z→i)   ((((2(√3)(z+i))/(1+(2(√3)z +1)^2 ))−2arctan(2(√3)z+1))/((z+i)^3 ))  =((((4i(√3))/(1+(2(√3)i +1)^2 ))−2arctan(2(√3)i+1))/(−8i))  =−((√3)/2)×(1/(1−12+4(√3)i +1))+(1/(4i))arctan(2(√3)i+1)  =((−(√3))/(2(−10+4(√3)i))) +(1/(4i))arctan(2(√3)i+1)  =((√3)/(4(5−2(√3)i)))−(i/4) arctan(2(√3)i+1)

I=+arctan(2x+1)(x2+3)2dxI=x=3t+arctan(23t+1)9(t2+1)23dt=39+arctan(23t+1)(t2+1)2dtletφ(z)=arctan(23z+1)(z2+1)2φ(z)=arctan(23z+1)(zi)2(z+i)2+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{arctan(23z+1)(z+i)2}(1)=limzi231+(23z+1)2(z+i)22(z+i)arctan(23z+1)(z+i)4=limzi23(z+i)1+(23z+1)22arctan(23z+1)(z+i)3=4i31+(23i+1)22arctan(23i+1)8i=32×1112+43i+1+14iarctan(23i+1)=32(10+43i)+14iarctan(23i+1)=34(523i)i4arctan(23i+1)

Commented by msup trace by abdo last updated on 13/Jan/20

we have arctan(z)=(1/(2i))ln(((1+iz)/(1−iz))) ⇒  arctan(2(√3)i +1)=(1/(2i))ln(((1+i(2(√3)i+1))/(1−i(2(√3)i +1))))  =(1/(2i))ln(((1−2(√3)+i)/(1+2(√3)−i))) also  1−2(√3)+i =(√((1−2(√3))^2 +1))e^(iarctan((1/(1−2(√3)))))   1+2(√3)−i =(√((1+2(√3))^2  +1))e^(−iarctan((1/(1+2(√3)))))   ⇒ln(((...)/(...)))=(1/2)ln((1−2(√3))^2 +1)+iarctan((1/(1−2(√3))))  −(1/2)ln((1+2(√3))^2 +1) +i arctan((1/(1+2(√3))))

wehavearctan(z)=12iln(1+iz1iz)arctan(23i+1)=12iln(1+i(23i+1)1i(23i+1))=12iln(123+i1+23i)also123+i=(123)2+1eiarctan(1123)1+23i=(1+23)2+1eiarctan(11+23)ln(......)=12ln((123)2+1)+iarctan(1123)12ln((1+23)2+1)+iarctan(11+23)

Commented by mathmax by abdo last updated on 13/Jan/20

⇒arctan(2(√3)i+1)=(1/(4i))ln(((1−4(√3)+12+1)/(1+4(√3)+12+1)))  +(1/2){ arctan((1/(1−2(√3))))+arctan((1/(1+2(√3))))}  =(1/(4i))ln(((7−2(√3))/(7+2(√3))))+(1/2){(π/2)−arctan(2(√3)+1)−((π/2)−arctan(2(√3)−1)}  =(1/(4i))ln(((7−2(√3))/(7+2(√3))))+(1/2)(arctan(2(√3)−1)−arctan(2(√3)+1))

arctan(23i+1)=14iln(143+12+11+43+12+1)+12{arctan(1123)+arctan(11+23)}=14iln(7237+23)+12{π2arctan(23+1)(π2arctan(231)}=14iln(7237+23)+12(arctan(231)arctan(23+1))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com