Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 78021 by jagoll last updated on 13/Jan/20

lim_(x→0)  (1/x^2 )[∫^(x^2 +(π/3)) _(π/3) ((cos x)/x) dx ] =

limx01x2[π3x2+π3cosxxdx]=

Commented by mr W last updated on 13/Jan/20

lim_(x→0)  (1/x^2 )[∫^(x^2 +(π/3)) _(π/3) ((cos x)/x) dx ]  =lim_(x→0)  ((((cos (x^2 +(π/3)))/(x^2 +(π/3)))×2x)/(2x))  =lim_(x→0)  ((cos (x^2 +(π/3)))/(x^2 +(π/3)))  =(3/π)×(1/2)=(3/(2π))

limx01x2[π3x2+π3cosxxdx]=limx0cos(x2+π3)x2+π3×2x2x=limx0cos(x2+π3)x2+π3=3π×12=32π

Commented by jagoll last updated on 13/Jan/20

by using fundamental calculus theorem  sir? thanks

byusingfundamentalcalculustheoremsir?thanks

Commented by mr W last updated on 13/Jan/20

i don′t know what is “fundamental  calculus theorem”.

idontknowwhatisfundamentalcalculustheorem.

Commented by jagoll last updated on 13/Jan/20

(d/dx)[∫_0 ^x  f(u)du] = f(x) sir

ddx[x0f(u)du]=f(x)sir

Commented by mr W last updated on 13/Jan/20

generally:  (d/dx)[∫_(h(x)) ^(g(x))  f(u)du] = f(g(x))g′(x)−f(h(x))h′(x)

generally:ddx[g(x)h(x)f(u)du]=f(g(x))g(x)f(h(x))h(x)

Commented by jagoll last updated on 13/Jan/20

okay sir thank you

okaysirthankyou

Commented by msup trace by abdo last updated on 13/Jan/20

let A(x)=∫_(π/3) ^(x^2 +(π/3))  ((cost)/t)dt  ∃ c ∈](π/3),x^2 +(π/3)[ /  A(x)=(1/c) ∫_(π/3) ^(x^2  +(π/3)) cost dt  =(1/c)(sin(x^2 +(π/3))−((√3)/2))  ⇒((A(x))/x^2 ) =((sin(x^2 +(π/3))−((√3)/2))/(cx^2 ))  =(((1/2)sin(x^2 )+((√3)/2)cos(x^2 )−((√3)/2))/(cx^2 ))  ∼(1/(2cx^2 )){x^2 +(√3)(1−(x^4 /2))−(√3)}  =(1/(2c))−(x^2 /(4c)) ⇒lim_(x→0)  A(x)  =(1/(2×(π/3))) =(3/(2π)) .

letA(x)=π3x2+π3costtdtc]π3,x2+π3[/A(x)=1cπ3x2+π3costdt=1c(sin(x2+π3)32)A(x)x2=sin(x2+π3)32cx2=12sin(x2)+32cos(x2)32cx212cx2{x2+3(1x42)3}=12cx24climx0A(x)=12×π3=32π.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com