Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 78021 by jagoll last updated on 13/Jan/20

lim_(x→0)  (1/x^2 )[∫^(x^2 +(π/3)) _(π/3) ((cos x)/x) dx ] =

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left[\underset{\frac{\pi}{\mathrm{3}}} {\int}^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \frac{\mathrm{cos}\:{x}}{{x}}\:{dx}\:\right]\:= \\ $$

Commented by mr W last updated on 13/Jan/20

lim_(x→0)  (1/x^2 )[∫^(x^2 +(π/3)) _(π/3) ((cos x)/x) dx ]  =lim_(x→0)  ((((cos (x^2 +(π/3)))/(x^2 +(π/3)))×2x)/(2x))  =lim_(x→0)  ((cos (x^2 +(π/3)))/(x^2 +(π/3)))  =(3/π)×(1/2)=(3/(2π))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left[\underset{\frac{\pi}{\mathrm{3}}} {\int}^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \frac{\mathrm{cos}\:{x}}{{x}}\:{dx}\:\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{cos}\:\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)}{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}}×\mathrm{2}{x}}{\mathrm{2}{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)}{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{3}}{\pi}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}\pi} \\ $$

Commented by jagoll last updated on 13/Jan/20

by using fundamental calculus theorem  sir? thanks

$${by}\:{using}\:{fundamental}\:{calculus}\:{theorem} \\ $$$${sir}?\:{thanks}\: \\ $$

Commented by mr W last updated on 13/Jan/20

i don′t know what is “fundamental  calculus theorem”.

$${i}\:{don}'{t}\:{know}\:{what}\:{is}\:``{fundamental} \\ $$$${calculus}\:{theorem}''. \\ $$

Commented by jagoll last updated on 13/Jan/20

(d/dx)[∫_0 ^x  f(u)du] = f(x) sir

$$\frac{{d}}{{dx}}\left[\underset{\mathrm{0}} {\overset{{x}} {\int}}\:{f}\left({u}\right){du}\right]\:=\:{f}\left({x}\right)\:{sir} \\ $$

Commented by mr W last updated on 13/Jan/20

generally:  (d/dx)[∫_(h(x)) ^(g(x))  f(u)du] = f(g(x))g′(x)−f(h(x))h′(x)

$${generally}: \\ $$$$\frac{{d}}{{dx}}\left[\underset{{h}\left({x}\right)} {\overset{{g}\left({x}\right)} {\int}}\:{f}\left({u}\right){du}\right]\:=\:{f}\left({g}\left({x}\right)\right){g}'\left({x}\right)−{f}\left({h}\left({x}\right)\right){h}'\left({x}\right) \\ $$

Commented by jagoll last updated on 13/Jan/20

okay sir thank you

$${okay}\:{sir}\:{thank}\:{you} \\ $$

Commented by msup trace by abdo last updated on 13/Jan/20

let A(x)=∫_(π/3) ^(x^2 +(π/3))  ((cost)/t)dt  ∃ c ∈](π/3),x^2 +(π/3)[ /  A(x)=(1/c) ∫_(π/3) ^(x^2  +(π/3)) cost dt  =(1/c)(sin(x^2 +(π/3))−((√3)/2))  ⇒((A(x))/x^2 ) =((sin(x^2 +(π/3))−((√3)/2))/(cx^2 ))  =(((1/2)sin(x^2 )+((√3)/2)cos(x^2 )−((√3)/2))/(cx^2 ))  ∼(1/(2cx^2 )){x^2 +(√3)(1−(x^4 /2))−(√3)}  =(1/(2c))−(x^2 /(4c)) ⇒lim_(x→0)  A(x)  =(1/(2×(π/3))) =(3/(2π)) .

$${let}\:{A}\left({x}\right)=\int_{\frac{\pi}{\mathrm{3}}} ^{{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}} \:\frac{{cost}}{{t}}{dt} \\ $$$$\left.\exists\:{c}\:\in\right]\frac{\pi}{\mathrm{3}},{x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\left[\:/\right. \\ $$$${A}\left({x}\right)=\frac{\mathrm{1}}{{c}}\:\int_{\frac{\pi}{\mathrm{3}}} ^{{x}^{\mathrm{2}} \:+\frac{\pi}{\mathrm{3}}} {cost}\:{dt} \\ $$$$=\frac{\mathrm{1}}{{c}}\left({sin}\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\frac{{A}\left({x}\right)}{{x}^{\mathrm{2}} }\:=\frac{{sin}\left({x}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{{cx}^{\mathrm{2}} } \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}{sin}\left({x}^{\mathrm{2}} \right)+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\left({x}^{\mathrm{2}} \right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{{cx}^{\mathrm{2}} } \\ $$$$\sim\frac{\mathrm{1}}{\mathrm{2}{cx}^{\mathrm{2}} }\left\{{x}^{\mathrm{2}} +\sqrt{\mathrm{3}}\left(\mathrm{1}−\frac{{x}^{\mathrm{4}} }{\mathrm{2}}\right)−\sqrt{\mathrm{3}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{c}}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{c}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:{A}\left({x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}×\frac{\pi}{\mathrm{3}}}\:=\frac{\mathrm{3}}{\mathrm{2}\pi}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com