Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78049 by Pratah last updated on 13/Jan/20

Commented by Pratah last updated on 14/Jan/20

?

$$? \\ $$

Answered by behi83417@gmail.com last updated on 14/Jan/20

for:n=1⇒(1/(1/(1+a_1 )))−(1/a_1 )=1+a_1 −(1/a_1 )≥1(a_1 ∈N)  for:n=2⇒(1/(1/(1+a_1 )))+(1/(1/(1+a_1 )))−(1/((1/a_1 )+(1/a_2 )))=  =2+a_1 +a_2 −((a_1 .a_2 )/(a_1 +a_2 ))≥2+a_1 +a_2 −(1/2)>(1/2)(a_i ∈N)  it is true for:n=1,2.let assume that is  true for:n=k∈N.now we show that it is  true for:n=k+1  n=k+1⇒(1/(1/(1+a_1 )))+(1/(1/(1+a_2 )))+..+(1/(1/(1+a_(k+1) )))−  −(1/((1/a_1 )+(1/a_2 )+(1/a_3 )+.....+(1/a_(k+1) )))≥(1/n)+1+a_(k+1) −(1/(n+1))  =1+a_(k+1) +(1/(n(n+1)))>(1/(n+1))    .■

$$\mathrm{for}:\mathrm{n}=\mathrm{1}\Rightarrow\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}_{\mathrm{1}} }}−\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{1}} }=\mathrm{1}+\mathrm{a}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{1}} }\geqslant\mathrm{1}\left(\mathrm{a}_{\mathrm{1}} \in\mathrm{N}\right) \\ $$$$\mathrm{for}:\mathrm{n}=\mathrm{2}\Rightarrow\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}_{\mathrm{1}} }}+\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}_{\mathrm{1}} }}−\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{2}} }}= \\ $$$$=\mathrm{2}+\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} −\frac{\mathrm{a}_{\mathrm{1}} .\mathrm{a}_{\mathrm{2}} }{\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} }\geqslant\mathrm{2}+\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}>\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}_{\mathrm{i}} \in\mathrm{N}\right) \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}:\mathrm{n}=\mathrm{1},\mathrm{2}.\mathrm{let}\:\mathrm{assume}\:\mathrm{that}\:\mathrm{is} \\ $$$$\mathrm{true}\:\mathrm{for}:\mathrm{n}=\mathrm{k}\in\mathrm{N}.\mathrm{now}\:\mathrm{we}\:\mathrm{show}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{true}\:\mathrm{for}:\mathrm{n}=\mathrm{k}+\mathrm{1} \\ $$$$\mathrm{n}=\mathrm{k}+\mathrm{1}\Rightarrow\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}_{\mathrm{1}} }}+\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}_{\mathrm{2}} }}+..+\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{a}_{\mathrm{k}+\mathrm{1}} }}− \\ $$$$−\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{3}} }+.....+\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{k}+\mathrm{1}} }}\geqslant\frac{\mathrm{1}}{\mathrm{n}}+\mathrm{1}+\mathrm{a}_{\mathrm{k}+\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}} \\ $$$$=\mathrm{1}+\mathrm{a}_{\mathrm{k}+\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}>\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:\:\:\:.\blacksquare \\ $$

Commented by mr W last updated on 14/Jan/20

great!  i think the inequality is even valid,  if a_i  are not positive intergers, but  any positive real numbers.

$${great}! \\ $$$${i}\:{think}\:{the}\:{inequality}\:{is}\:{even}\:{valid}, \\ $$$${if}\:{a}_{{i}} \:{are}\:{not}\:{positive}\:{intergers},\:{but} \\ $$$${any}\:{positive}\:{real}\:{numbers}. \\ $$

Answered by mr W last updated on 14/Jan/20

f(a_i )=(1/(Σ(1/(1+a_i ))))−(1/(Σ(1/a_i )))  (∂f/∂a_i )=(1/((Σ(1/(1+a_i )))^2 ))×((−1)/((1+a_i )^2 ))−(1/((Σ(1/a_i ))^2 ))×((−1)/a_i ^2 )=0  ⇒((Σ(1/a_i ))/(Σ(1/(1+a_i ))))=((1+a_i )/a_(i ) )  ⇒(1/a_i )=((Σ(1/a_i ))/(Σ(1/(1+a_i ))))−1  i.e. for minimum of f(a_i ) all a_i  should  be equal: a_1 =a_2 =...=a_n =a>0  min.f=(1/(n/(1+a)))−(1/(n/a))=((1+a)/n)−(a/n)=(1/n)  ⇒f(a_i )≥min.f=(1/n)

$${f}\left({a}_{{i}} \right)=\frac{\mathrm{1}}{\Sigma\frac{\mathrm{1}}{\mathrm{1}+{a}_{{i}} }}−\frac{\mathrm{1}}{\Sigma\frac{\mathrm{1}}{{a}_{{i}} }} \\ $$$$\frac{\partial{f}}{\partial{a}_{{i}} }=\frac{\mathrm{1}}{\left(\Sigma\frac{\mathrm{1}}{\mathrm{1}+{a}_{{i}} }\right)^{\mathrm{2}} }×\frac{−\mathrm{1}}{\left(\mathrm{1}+{a}_{{i}} \right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\Sigma\frac{\mathrm{1}}{{a}_{{i}} }\right)^{\mathrm{2}} }×\frac{−\mathrm{1}}{{a}_{{i}} ^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\frac{\Sigma\frac{\mathrm{1}}{{a}_{{i}} }}{\Sigma\frac{\mathrm{1}}{\mathrm{1}+{a}_{{i}} }}=\frac{\mathrm{1}+{a}_{{i}} }{{a}_{{i}\:} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{{a}_{{i}} }=\frac{\Sigma\frac{\mathrm{1}}{{a}_{{i}} }}{\Sigma\frac{\mathrm{1}}{\mathrm{1}+{a}_{{i}} }}−\mathrm{1} \\ $$$${i}.{e}.\:{for}\:{minimum}\:{of}\:{f}\left({a}_{{i}} \right)\:{all}\:{a}_{{i}} \:{should} \\ $$$${be}\:{equal}:\:{a}_{\mathrm{1}} ={a}_{\mathrm{2}} =...={a}_{{n}} ={a}>\mathrm{0} \\ $$$${min}.{f}=\frac{\mathrm{1}}{\frac{{n}}{\mathrm{1}+{a}}}−\frac{\mathrm{1}}{\frac{{n}}{{a}}}=\frac{\mathrm{1}+{a}}{{n}}−\frac{{a}}{{n}}=\frac{\mathrm{1}}{{n}} \\ $$$$\Rightarrow{f}\left({a}_{{i}} \right)\geqslant{min}.{f}=\frac{\mathrm{1}}{{n}} \\ $$

Commented by mr W last updated on 14/Jan/20

for this proof we only need a_i ∈R^+   instead of a_i ∈N.

$${for}\:{this}\:{proof}\:{we}\:{only}\:{need}\:{a}_{{i}} \in{R}^{+} \\ $$$${instead}\:{of}\:{a}_{{i}} \in\mathbb{N}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com