Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 78056 by ajfour last updated on 13/Jan/20

Answered by ajfour last updated on 13/Jan/20

It is from aid of another  diagram that x^3 −x=2c    ....(i)  From here  first let AH=r  tan θ=(1/x)=(r/(2c))          .....(ii)  Also considering △GHP     ((AH)/(AG))=((PH)/(PG))  ⇒ (r/(2+r))=((2c)/(√((2c)^2 +[2(r+1)]^2 )))   ..(iii)    using (ii) in (i)     (((2c)^3 )/r^3 )−((2c)/r)= 2c        .....(I)  Solving for common root of  (iii) & (I) should give a new  type of solution, and an alter-  native to Cardano′s method,  for  x^3 −x=2c , which gets  difficult if  c^2 <((1/3))^3 ...  I shall carry on..

$${It}\:{is}\:{from}\:{aid}\:{of}\:{another} \\ $$$${diagram}\:{that}\:{x}^{\mathrm{3}} −{x}=\mathrm{2}{c}\:\:\:\:....\left({i}\right) \\ $$$${From}\:{here} \\ $$$${first}\:{let}\:{AH}={r} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{1}}{{x}}=\frac{{r}}{\mathrm{2}{c}}\:\:\:\:\:\:\:\:\:\:.....\left({ii}\right) \\ $$$${Also}\:{considering}\:\bigtriangleup{GHP} \\ $$$$\:\:\:\frac{{AH}}{{AG}}=\frac{{PH}}{{PG}} \\ $$$$\Rightarrow\:\frac{{r}}{\mathrm{2}+{r}}=\frac{\mathrm{2}{c}}{\sqrt{\left(\mathrm{2}{c}\right)^{\mathrm{2}} +\left[\mathrm{2}\left({r}+\mathrm{1}\right)\right]^{\mathrm{2}} }}\:\:\:..\left({iii}\right) \\ $$$$ \\ $$$${using}\:\left({ii}\right)\:{in}\:\left({i}\right) \\ $$$$\:\:\:\frac{\left(\mathrm{2}{c}\right)^{\mathrm{3}} }{{r}^{\mathrm{3}} }−\frac{\mathrm{2}{c}}{{r}}=\:\mathrm{2}{c}\:\:\:\:\:\:\:\:.....\left({I}\right) \\ $$$${Solving}\:{for}\:{common}\:{root}\:{of} \\ $$$$\left({iii}\right)\:\&\:\left({I}\right)\:{should}\:{give}\:{a}\:{new} \\ $$$${type}\:{of}\:{solution},\:{and}\:{an}\:{alter}- \\ $$$${native}\:{to}\:{Cardano}'{s}\:{method}, \\ $$$${for}\:\:{x}^{\mathrm{3}} −{x}=\mathrm{2}{c}\:,\:{which}\:{gets} \\ $$$${difficult}\:{if}\:\:{c}^{\mathrm{2}} <\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} ... \\ $$$${I}\:{shall}\:{carry}\:{on}.. \\ $$$$ \\ $$$$ \\ $$

Commented by ajfour last updated on 13/Jan/20

⇒ (r/(2+r))=((2c)/(√((2c)^2 +[2(r+1)]^2 )))   ..(iii)     let  r+1=t    r+1=((2c)/x)+1  So     (((2c/x))/((((2c)/x)+2)))=(c/(√(c^2 +(((2c)/x)+1)^2 )))  but   x^2 −((2c)/x) = 1         (  As x^3 −x=2c  )  ⇒  x^2 −r=1     &    As    (r/(r+2))=(c/(√(c^2 +x^4 )))  ⇒    r^2 x^4  = 4c^2 r+4c^2   ⇒  r^2 x^4 = 4c^2 x^2   ⇒    rx=2c  So the simplest it can get is       { ((x^2 −r=1)),((rx=c)) :}      ...................   !  ....................

$$\Rightarrow\:\frac{{r}}{\mathrm{2}+{r}}=\frac{\mathrm{2}{c}}{\sqrt{\left(\mathrm{2}{c}\right)^{\mathrm{2}} +\left[\mathrm{2}\left({r}+\mathrm{1}\right)\right]^{\mathrm{2}} }}\:\:\:..\left({iii}\right) \\ $$$$\:\:\:{let}\:\:{r}+\mathrm{1}={t} \\ $$$$\:\:{r}+\mathrm{1}=\frac{\mathrm{2}{c}}{{x}}+\mathrm{1} \\ $$$${So}\:\:\:\:\:\frac{\left(\mathrm{2}{c}/{x}\right)}{\left(\frac{\mathrm{2}{c}}{{x}}+\mathrm{2}\right)}=\frac{{c}}{\sqrt{{c}^{\mathrm{2}} +\left(\frac{\mathrm{2}{c}}{{x}}+\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$${but} \\ $$$$\:{x}^{\mathrm{2}} −\frac{\mathrm{2}{c}}{{x}}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\left(\:\:{As}\:{x}^{\mathrm{3}} −{x}=\mathrm{2}{c}\:\:\right) \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} −{r}=\mathrm{1}\:\:\:\:\:\&\:\: \\ $$$${As}\:\:\:\:\frac{{r}}{{r}+\mathrm{2}}=\frac{{c}}{\sqrt{{c}^{\mathrm{2}} +{x}^{\mathrm{4}} }} \\ $$$$\Rightarrow\:\:\:\:{r}^{\mathrm{2}} {x}^{\mathrm{4}} \:=\:\mathrm{4}{c}^{\mathrm{2}} {r}+\mathrm{4}{c}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{2}} {x}^{\mathrm{4}} =\:\mathrm{4}{c}^{\mathrm{2}} {x}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{rx}=\mathrm{2}{c} \\ $$$${So}\:{the}\:{simplest}\:{it}\:{can}\:{get}\:{is} \\ $$$$\:\:\:\:\begin{cases}{{x}^{\mathrm{2}} −{r}=\mathrm{1}}\\{{rx}={c}}\end{cases}\:\:\:\: \\ $$$$...................\:\:\:!\:\:.................... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com