Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 78074 by Rio Michael last updated on 14/Jan/20

evaluate ∫_1 ^4 sinh^(−1) x dx  and ∫_1 ^(1/2) tanh^(−1) x dx

$${evaluate}\:\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}\:^{−\mathrm{1}} {x}\:{dx}\:\:{and}\:\underset{\mathrm{1}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\int}}\mathrm{tanh}\:^{−\mathrm{1}} {x}\:{dx} \\ $$

Answered by mr W last updated on 14/Jan/20

∫sinh^(−1)  x dx  =∫ln (x+(√(1+x^2 ))) dx  =xln (x+(√(1+x^2 )))−∫((x(1+(x/(√(1+x^2 )))))/(x+(√(1+x^2 )))) dx  =xln (x+(√(1+x^2 )))−∫(x/(√(1+x^2 ))) dx  =xln (x+(√(1+x^2 )))−∫(1/(2(√(1+x^2 )))) d(1+x^2 )  =xln (x+(√(1+x^2 )))−(√(1+x^2 ))+C    ∫_1 ^4 sinh^(−1)  x dx  =[xln (x+(√(1+x^2 )))−(√(1+x^2 ))]_1 ^4   =4ln (4+(√(17)))−ln (1+(√2))−(√(17))+(√2)

$$\int\mathrm{sinh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\int\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{dx} \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\int\frac{{x}\left(\mathrm{1}+\frac{{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right)}{{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\int\frac{{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx} \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\int\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{d}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$={x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+{C} \\ $$$$ \\ $$$$\int_{\mathrm{1}} ^{\mathrm{4}} \mathrm{sinh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\left[{x}\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right]_{\mathrm{1}} ^{\mathrm{4}} \\ $$$$=\mathrm{4ln}\:\left(\mathrm{4}+\sqrt{\mathrm{17}}\right)−\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)−\sqrt{\mathrm{17}}+\sqrt{\mathrm{2}} \\ $$

Answered by mr W last updated on 14/Jan/20

∫tanh^(−1)  x dx  =(1/2)∫ln ((1+x)/(1−x)) dx  =(1/2)[xln ((1−x)/(1+x))+∫((2x)/(1−x^2 )) dx]  =(1/2)[xln ((1−x)/(1+x))−∫(1/(1−x^2 )) d(1−x^2 )]  =(1/2)[xln ((1−x)/(1+x))−ln (1−x^2 )]+C

$$\int\mathrm{tanh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{ln}\:\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\mathrm{ln}\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}+\int\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\mathrm{ln}\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}−\int\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{d}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}\mathrm{ln}\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}−\mathrm{ln}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right]+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com