Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 78106 by aliesam last updated on 14/Jan/20

Commented by msup trace by abdo last updated on 14/Jan/20

let f(x)=x^(1−ξ)  ∫_x ^(x+1) sin(t^2 )dt  changement t^2 =u give  f(x)=x^(1−ξ)    ∫_x^2  ^((x+1)^2 )  sin(u)(du/(2(√u)))  =(x^(1−ξ) /2) ∫_x^2  ^((x+1)^2 )   ((sinu)/(√u))du  ∃ c_x  ∈]x^2 ,(x+1)^2 [  /  2f(x)=x^(1−ξ)  ×(1/(√c_x ))∫_x^2  ^((x+1)^2 ) sinu du  =(x^(1−ξ) /(√c_x )){cos(x+1)^2 −cosx^2 }  c_x =λx^2  +(1−λ)(x+1)^2   λ ∈]0,1[  ⇒  f(x)=(1/2)(x^(1−ξ) /(√(λx^2  +(1−λ)(x+1)^2 ))){cos(x+1)^2 −co(x^2 )}  ∣f(x)∣≤(x^(1−ξ) /(√(λx^2 +(1+λ)(x^2 +2x+1))))  ⇒∣f(x)∣≤(x^(1−ξ) /(x(√(λ+(1+λ)(1+(2/x)+(1/x^2 ))))))  ⇒∣f(x)∣≤(1/(x^ξ (√(λ+(1+λ)(1+(2/x)+(1/x^2 ))))))  ξ>0 ⇒lim_(x→+∞)   (1/x^ξ ) =0 ⇒  lim_(x→+∞)  f(x)=0

letf(x)=x1ξxx+1sin(t2)dtchangementt2=ugivef(x)=x1ξx2(x+1)2sin(u)du2u=x1ξ2x2(x+1)2sinuuducx]x2,(x+1)2[/2f(x)=x1ξ×1cxx2(x+1)2sinudu=x1ξcx{cos(x+1)2cosx2}cx=λx2+(1λ)(x+1)2λ]0,1[f(x)=12x1ξλx2+(1λ)(x+1)2{cos(x+1)2co(x2)}f(x)∣⩽x1ξλx2+(1+λ)(x2+2x+1)⇒∣f(x)∣⩽x1ξxλ+(1+λ)(1+2x+1x2)⇒∣f(x)∣⩽1xξλ+(1+λ)(1+2x+1x2)ξ>0limx+1xξ=0limx+f(x)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com