All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 78106 by aliesam last updated on 14/Jan/20
Commented by msup trace by abdo last updated on 14/Jan/20
letf(x)=x1−ξ∫xx+1sin(t2)dtchangementt2=ugivef(x)=x1−ξ∫x2(x+1)2sin(u)du2u=x1−ξ2∫x2(x+1)2sinuudu∃cx∈]x2,(x+1)2[/2f(x)=x1−ξ×1cx∫x2(x+1)2sinudu=x1−ξcx{cos(x+1)2−cosx2}cx=λx2+(1−λ)(x+1)2λ∈]0,1[⇒f(x)=12x1−ξλx2+(1−λ)(x+1)2{cos(x+1)2−co(x2)}∣f(x)∣⩽x1−ξλx2+(1+λ)(x2+2x+1)⇒∣f(x)∣⩽x1−ξxλ+(1+λ)(1+2x+1x2)⇒∣f(x)∣⩽1xξλ+(1+λ)(1+2x+1x2)ξ>0⇒limx→+∞1xξ=0⇒limx→+∞f(x)=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com