Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 78119 by jagoll last updated on 14/Jan/20

find the center point ellips  5x^2 +8y^2 −24x−24y+4xy=0

$${find}\:{the}\:{center}\:{point}\:{ellips} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{8}{y}^{\mathrm{2}} −\mathrm{24}{x}−\mathrm{24}{y}+\mathrm{4}{xy}=\mathrm{0} \\ $$

Commented by jagoll last updated on 14/Jan/20

this problem is right or not?

$${this}\:{problem}\:{is}\:{right}\:{or}\:{not}? \\ $$

Commented by mr W last updated on 14/Jan/20

question is right and good.

$${question}\:{is}\:{right}\:{and}\:{good}. \\ $$

Commented by MJS last updated on 14/Jan/20

solving for x:  x=−(2/5)y+((12)/5)±(6/5)(√(−y^2 +2y+4))  this is defined for 1−(√5)≤y≤1+(√5) ⇒  ⇒ y−coordinate of center =1  solving for y:  y=−(x/4)+(3/2)±(3/4)(√(−x^2 +4xl+4))  this is defined for 2−2(√2)≤x≤2+2(√2) ⇒  ⇒ x−coordinate of center =2

$$\mathrm{solving}\:\mathrm{for}\:{x}: \\ $$$${x}=−\frac{\mathrm{2}}{\mathrm{5}}{y}+\frac{\mathrm{12}}{\mathrm{5}}\pm\frac{\mathrm{6}}{\mathrm{5}}\sqrt{−{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{4}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:\mathrm{1}−\sqrt{\mathrm{5}}\leqslant{y}\leqslant\mathrm{1}+\sqrt{\mathrm{5}}\:\Rightarrow \\ $$$$\Rightarrow\:{y}−\mathrm{coordinate}\:\mathrm{of}\:\mathrm{center}\:=\mathrm{1} \\ $$$$\mathrm{solving}\:\mathrm{for}\:{y}: \\ $$$${y}=−\frac{{x}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\pm\frac{\mathrm{3}}{\mathrm{4}}\sqrt{−{x}^{\mathrm{2}} +\mathrm{4}{xl}+\mathrm{4}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}\:\Rightarrow \\ $$$$\Rightarrow\:{x}−\mathrm{coordinate}\:\mathrm{of}\:\mathrm{center}\:=\mathrm{2} \\ $$

Commented by jagoll last updated on 14/Jan/20

thanks sir

$${thanks}\:{sir}\: \\ $$

Commented by jagoll last updated on 14/Jan/20

finally the center point at (2,1)

$${finally}\:{the}\:{center}\:{point}\:{at}\:\left(\mathrm{2},\mathrm{1}\right) \\ $$

Commented by MJS last updated on 14/Jan/20

yes

$$\mathrm{yes} \\ $$

Answered by mr W last updated on 15/Jan/20

if you don′t like to learn too many  formulas, you can determine the  parameters of the ellipse in following  way:    step 1: determine center point  that means to determine the range of  x and y ordinates. (see also sir MJS′ post)  we form eqn. as quadratic eqn. w.r.t. y:  8y^2 +4(x−6)y+5x^2 −24x=0  Δ=4^2 (x−6)^2 −4×8×(5x^2 −24x)≥0  (x−6)^2 −2(5x^2 −24x)≥0  −x^2 +4x+4≥0  x^2 −4x−4≤0  (x−2)^2 −8≤0  ⇒2−2(√2)≤x≤2+2(√2)  ⇒x_C =2  we form eqn. as quadratic eqn. w.r.t. x:  5x^2 +4(y−6)x+8y^2 −24y=0  Δ=4^2 (y−6)^2 −4×5(8y^2 −24y)≥0  (y−6)^2 −5(2y^2 −6y)≥0  −y^2 +2y+4≥0  y^2 −2y−4≤0  (y−1)^2 −5≤0  ⇒1−(√5)≤y≤1+(√5)  ⇒y_C =1  ⇒center point of ellipse is C(2,1)    step 2: make the center point as origin  replace x with x+x_C  and y with y+y_C   in the eqn.  5(x+2)^2 +8(y+1)^2 −24(x+2)−24(y+1)+4(x+2)(y+1)=0  ⇒5x^2 +8y^2 +4xy−36=0    step 3: find the major and minor axis  express the eqn. in polar form with  x=r cos θ, y=r sin θ  5r^2 cos^2  θ+8r^2 sin^2  θ+4r^2 sin θcos θ−36=0  [(5/2)(cos 2θ+1)+4(1−cos 2θ)+2sin 2θ]r^2 −36=0  (13−3cos 2θ+4sin 2θ)r^2 =72  [13+5(−(3/5)cos 2θ+(4/5)sin 2θ)]r^2 =72  [13+5(−sin αcos 2θ+cos αsin 2θ)]r^2 =72  [13+5 sin (2θ−α)]r^2 =72  ⇒r=((6(√2))/(√(13+5 sin (2θ−α))))  r_(max) =major axis=a=((6(√2))/(√(13−5)))=3  at 2θ−α=−(π/2) or θ=tan^(−1) (1/3)−(π/4)  r_(min) =minor axis=b=((6(√2))/(√(13+5)))=2  at 2θ−α=(π/2) or θ=tan^(−1) (1/3)+(π/4)  we know in this way also that the  ellipse is rotated by angle tan^(−1) (1/3)−(π/4)

$${if}\:{you}\:{don}'{t}\:{like}\:{to}\:{learn}\:{too}\:{many} \\ $$$${formulas},\:{you}\:{can}\:{determine}\:{the} \\ $$$${parameters}\:{of}\:{the}\:{ellipse}\:{in}\:{following} \\ $$$${way}: \\ $$$$ \\ $$$${step}\:\mathrm{1}:\:{determine}\:{center}\:{point} \\ $$$${that}\:{means}\:{to}\:{determine}\:{the}\:{range}\:{of} \\ $$$${x}\:{and}\:{y}\:{ordinates}.\:\left({see}\:{also}\:{sir}\:{MJS}'\:{post}\right) \\ $$$${we}\:{form}\:{eqn}.\:{as}\:{quadratic}\:{eqn}.\:{w}.{r}.{t}.\:{y}: \\ $$$$\mathrm{8}{y}^{\mathrm{2}} +\mathrm{4}\left({x}−\mathrm{6}\right){y}+\mathrm{5}{x}^{\mathrm{2}} −\mathrm{24}{x}=\mathrm{0} \\ $$$$\Delta=\mathrm{4}^{\mathrm{2}} \left({x}−\mathrm{6}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{8}×\left(\mathrm{5}{x}^{\mathrm{2}} −\mathrm{24}{x}\right)\geqslant\mathrm{0} \\ $$$$\left({x}−\mathrm{6}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{5}{x}^{\mathrm{2}} −\mathrm{24}{x}\right)\geqslant\mathrm{0} \\ $$$$−{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{4}\leqslant\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{8}\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{C}} =\mathrm{2} \\ $$$${we}\:{form}\:{eqn}.\:{as}\:{quadratic}\:{eqn}.\:{w}.{r}.{t}.\:{x}: \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}\left({y}−\mathrm{6}\right){x}+\mathrm{8}{y}^{\mathrm{2}} −\mathrm{24}{y}=\mathrm{0} \\ $$$$\Delta=\mathrm{4}^{\mathrm{2}} \left({y}−\mathrm{6}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{5}\left(\mathrm{8}{y}^{\mathrm{2}} −\mathrm{24}{y}\right)\geqslant\mathrm{0} \\ $$$$\left({y}−\mathrm{6}\right)^{\mathrm{2}} −\mathrm{5}\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{6}{y}\right)\geqslant\mathrm{0} \\ $$$$−{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{4}\geqslant\mathrm{0} \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{y}−\mathrm{4}\leqslant\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{5}\leqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\sqrt{\mathrm{5}}\leqslant{y}\leqslant\mathrm{1}+\sqrt{\mathrm{5}} \\ $$$$\Rightarrow{y}_{{C}} =\mathrm{1} \\ $$$$\Rightarrow{center}\:{point}\:{of}\:{ellipse}\:{is}\:{C}\left(\mathrm{2},\mathrm{1}\right) \\ $$$$ \\ $$$${step}\:\mathrm{2}:\:{make}\:{the}\:{center}\:{point}\:{as}\:{origin} \\ $$$${replace}\:{x}\:{with}\:{x}+{x}_{{C}} \:{and}\:{y}\:{with}\:{y}+{y}_{{C}} \\ $$$${in}\:{the}\:{eqn}. \\ $$$$\mathrm{5}\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{8}\left({y}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{24}\left({x}+\mathrm{2}\right)−\mathrm{24}\left({y}+\mathrm{1}\right)+\mathrm{4}\left({x}+\mathrm{2}\right)\left({y}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{x}^{\mathrm{2}} +\mathrm{8}{y}^{\mathrm{2}} +\mathrm{4}{xy}−\mathrm{36}=\mathrm{0} \\ $$$$ \\ $$$${step}\:\mathrm{3}:\:{find}\:{the}\:{major}\:{and}\:{minor}\:{axis} \\ $$$${express}\:{the}\:{eqn}.\:{in}\:{polar}\:{form}\:{with} \\ $$$${x}={r}\:\mathrm{cos}\:\theta,\:{y}={r}\:\mathrm{sin}\:\theta \\ $$$$\mathrm{5}{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{8}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta−\mathrm{36}=\mathrm{0} \\ $$$$\left[\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{2}\theta+\mathrm{1}\right)+\mathrm{4}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right)+\mathrm{2sin}\:\mathrm{2}\theta\right]{r}^{\mathrm{2}} −\mathrm{36}=\mathrm{0} \\ $$$$\left(\mathrm{13}−\mathrm{3cos}\:\mathrm{2}\theta+\mathrm{4sin}\:\mathrm{2}\theta\right){r}^{\mathrm{2}} =\mathrm{72} \\ $$$$\left[\mathrm{13}+\mathrm{5}\left(−\frac{\mathrm{3}}{\mathrm{5}}\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{4}}{\mathrm{5}}\mathrm{sin}\:\mathrm{2}\theta\right)\right]{r}^{\mathrm{2}} =\mathrm{72} \\ $$$$\left[\mathrm{13}+\mathrm{5}\left(−\mathrm{sin}\:\alpha\mathrm{cos}\:\mathrm{2}\theta+\mathrm{cos}\:\alpha\mathrm{sin}\:\mathrm{2}\theta\right)\right]{r}^{\mathrm{2}} =\mathrm{72} \\ $$$$\left[\mathrm{13}+\mathrm{5}\:\mathrm{sin}\:\left(\mathrm{2}\theta−\alpha\right)\right]{r}^{\mathrm{2}} =\mathrm{72} \\ $$$$\Rightarrow{r}=\frac{\mathrm{6}\sqrt{\mathrm{2}}}{\sqrt{\mathrm{13}+\mathrm{5}\:\mathrm{sin}\:\left(\mathrm{2}\theta−\alpha\right)}} \\ $$$${r}_{{max}} ={major}\:{axis}={a}=\frac{\mathrm{6}\sqrt{\mathrm{2}}}{\sqrt{\mathrm{13}−\mathrm{5}}}=\mathrm{3} \\ $$$${at}\:\mathrm{2}\theta−\alpha=−\frac{\pi}{\mathrm{2}}\:{or}\:\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}−\frac{\pi}{\mathrm{4}} \\ $$$${r}_{{min}} ={minor}\:{axis}={b}=\frac{\mathrm{6}\sqrt{\mathrm{2}}}{\sqrt{\mathrm{13}+\mathrm{5}}}=\mathrm{2} \\ $$$${at}\:\mathrm{2}\theta−\alpha=\frac{\pi}{\mathrm{2}}\:{or}\:\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}+\frac{\pi}{\mathrm{4}} \\ $$$${we}\:{know}\:{in}\:{this}\:{way}\:{also}\:{that}\:{the} \\ $$$${ellipse}\:{is}\:{rotated}\:{by}\:{angle}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}−\frac{\pi}{\mathrm{4}} \\ $$

Commented by mr W last updated on 15/Jan/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com